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Chapter 1

Foundations

1.1 Statements and Truth

1. Which of the following are statements? If they are statements, what is the their value?

(a) Take the derivative of f(x).

(b) The derivative of sin(x).

(c) The derivative of cos(x) is equal to negative sin(x).

(d) The sum of sin(x) and cos(x) is always equal to one, for any number x.

(e) The sum of sin(x) and cos(x). [Answer: Not a statement.]

(f) The derivative of ln(x) is 1
x . [Answer: False statement.]

(g) Add two even numbers.

(h) If you add two even numbers you will get an even number.

(i) If you add two odd numbers you will get an even number. [Answer: True statement.]

(j) If you add an even and an odd number you will get an odd number.

(k) What is the sum of an even and an odd number? [Answer: Not a statement.]

(l) The smallest prime number is one. [Answer: False statement.]

(m) The smallest prime number less than one hundred. [Answer: Not a statement.]

2. Let x = 3 and y = 5. Let P be the statement “x is bigger than four” and Q be the statement “y is
bigger than four.” Convert the following into normal English sentences and state which of the following
are true.

(a) P

(b) ∼ P
(c) Q

(d) ∼ Q [Answer: y is less than or equal to four. False.]
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6 CHAPTER 1. FOUNDATIONS

(e) ∼ (∼ Q) [Answer: y is not not bigger than four. True.]

(f) P ∧Q [Answer: x and y are both bigger than four. False.]

(g) P ∨Q

(h) (∼ P ) ∨ (∼ Q)

(i) (∼ P ) ∧ (∼ Q) [Answer: Neither x nor y is bigger than four. False.]

3. Find statements P and Q so that you can write the following statements using only the symbols
P,Q,∼,∧, and ∨.

(a) Four is positive and even. [Answer: P =“four is positive”, Q = “four is even”, P ∧Q.]

(b) The number n is even or odd.

(c) Four is not prime.

(d) Nine is odd and not a prime number.

(e) Zero is even and not positive.

(f) Zero is neither positive nor negative. [Answer: P =“zero is positive”, Q = “zero is negative”,
(∼ P ) ∧ (∼ Q).]

4. Write out truth tables for the following:

(a) P ∧ (Q ∨ P )

(b) P ∨ (Q ∧ P )

Solution:
P Q (Q ∧ P ) P ∨ (Q ∧ P )
T T T T
T F F T
F T F F
F F F F

(c) (P ∧Q) ∨ (∼ Q)

(d) P ∧ (∼ Q ∨Q)

(e) (∼ P∧ ∼ Q) ∨ P
Solution:
P Q ∼ P ∼ Q (∼ P∧ ∼ Q) (∼ P∧ ∼ Q) ∨ P
T T F F F T
T F F T F T
F T T F F F
F F T T T T

(f) ∼ (P ∧ (∼ Q ∨Q))

(g) ∼ P ∧ (∼ Q ∨Q)
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(h) ∼ ((P ∨Q) ∨R)

Solution:
P Q R P ∨Q (P ∨Q) ∨R ∼ ((P ∨Q) ∨R)
T T T T T F
T T F T T F
T F T T T F
T F F T T F
F T T T T F
F T F T T F
F F T F T F
F F F F F T

(i) (∼ P ∧Q)∧ ∼ R
(j) ∼ P∧ ∼ (Q ∨R)

5. Use truth tables to show the following logical equivalences:

(a) Idempotent Laws:

i. P ≡ P ∧ P
ii. P ≡ P ∨ P

(b) Double Negation Law:

P ≡∼ (∼ P )

(c) Commutativity Laws:

i. P ∨Q ≡ Q ∨ P
ii. P ∧Q ≡ Q ∧ P

(d) Associativity Laws:

i. P ∨ (Q ∨R) ≡ (P ∨Q) ∨R)

ii. P ∧ (Q ∧R) ≡ (P ∧Q) ∧R

(e) Distributivity Laws:

i. P ∨ (Q ∧R) ≡ (P ∨Q) ∧ (P ∨R)
Solution:
P Q R Q ∧R P ∨ (Q ∧R)
T T T T T
T T F F T
T F T F T
T F F F T
F T T T T
F T F F F
F F T F F
F F F F F

,

P Q R P ∨Q P ∨R (P ∨Q) ∧ (P ∨R)
T T T T T T
T T F T T T
T F T T T T
T F F T T T
F T T T T T
F T F T F F
F F T F T F
F F F F F F

ii. P ∧ (Q ∨R) ≡ (P ∧Q) ∨ (P ∧R)

(f) DeMorgan’s Laws:
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i. ∼ (P ∧Q) ≡ (∼ P ) ∨ (∼ Q)

ii. ∼ (P ∨Q) ≡ (∼ P ) ∧ (∼ Q)

(g) Absorption Laws:

i. P ≡ P ∨ (P ∧Q)
Solution:
P
T
T
F
F

,

P Q P ∧Q P ∨ (P ∧Q)
T T T T
T F F T
F T F F
F F F F

ii. P ≡ P ∧ (P ∨Q)
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1.2 Conditionals and Biconditionals

1. Make truth tables for the following statements.

(a) P ∧ (P ⇒ P )

(b) (P ⇒ Q) ∨ (Q⇒ P )

(c) (P ∧Q)⇒ P

Solution:
P Q P ∧Q (P ∧Q)⇒ P
T T T T
T F F T
F T F T
F F F T

(d) (P ∧Q)⇒ (P ∨Q)

(e) (P ∨Q)⇒ (P ∧Q)

(f) P ⇒ (Q ∧ P )

(g) (∼ P ⇒ Q) ∧ (P ⇒∼ Q)

Solution:
P Q ∼ P ∼ P ⇒ Q ∼ Q P ⇒∼ Q (∼ P ⇒ Q) ∧ (P ⇒∼ Q)
T T F T F F F
T F F T T T T
F T T T F T T
F F T F T T F

(h) (∼ P ⇒ Q) ∧ (Q⇒∼ P )

Solution:
P Q ∼ P ∼ P ⇒ Q Q⇒∼ P (∼ P ⇒ Q) ∧ (Q⇒∼ P )
T T F T F F
T F F T T T
F T T T T T
F F T F T F

(i) (∼ P ⇒ Q) ∨ (Q⇒∼ P )

(j) (P ⇒ Q) ∧ (P ⇒ R)

(k) (P ⇒ Q) ∧ (Q⇒ R)

Solution:
P Q R P ⇒ Q Q⇒ R (P ⇒ Q) ∧ (Q⇒ R)
T T T T T T
T T F T F F
T F T F T F
T F F F T F
F T T T T T
F T F T F F
F F T T T T
F F F T T T

.
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(l) (P ⇒ Q) ∨ (Q⇒ R)

2. Consider the following sentences:

P : n is prime.

S : n is square.

E : n is even.

Q : n+ 1 is prime.

Rewrite the following statements using only these sentences and the symbols ⇒ and ∼. Then state
whether the statement is true or false. If it is false, then explain why. Recall that an integer is square
if it is equal to some integer squared, and the successor of an integer is that integer plus one.

(a) If n is a square then it is not prime.

(b) If n is not prime then it is a square.

(c) If n is not a square then it is prime.

(d) If n is prime then it is not a square.

(e) If n is not a square then it is not a prime.

(f) If n is not a prime then it is not a square. [Answer: ∼ P ⇒∼ S, False. For example, the number
four is not a prime yet it is a square.]

(g) If n is a prime then it is not even.

(h) If n is not prime then it is even. [Answer: ∼ P ⇒ E, False. For example the number nine is not
a prime and it is not even.]

(i) If n is not prime then it is not even.

(j) If n is not even then it is not prime.

(k) If n is prime then its successor is prime. [Answer: P ⇒ Q, False. For example three is prime, but
its successor four is not.]

(l) If n is prime then its successor is not prime. [Answer: P ⇒∼ Q, False. For example two is prime,
but its successor three is also prime.]

(m) If n is not prime then its successor is prime. [Answer: ∼ P ⇒ Q, False. For example, eight is not
prime but its successor is also not prime.]

(n) If n is not prime then its successor is not prime.

3. Consider the following sentences about an arbitrary integer n:

A : n is a natural number.

B : n2 is a natural number.

C : n is a negative number.

D : n2 is a negative number.

Translate the following into english sentences and state whether they are true or false. Use that the
natural numbers are the whole positive numbers 1, 2, 3, · · · and the integers are all the whole numbers
· · · ,−2,−1, 0, 1, 2, · · · .
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(a) A⇒ B [Answer: The square of a natural number is natural. True.]

(b) B ⇒ A [Answer: If n2 is natural, so is n. False.]

(c) C ⇒ B

(d) B ⇒ C

(e) B ⇒ A ∨ C
(f) C ⇒ D

(g) D ⇒ A

(h) D ⇒ B

(i) D ⇒ C [Answer: If n2 is negative, so is n. True.]

4. Use truth tables to prove the contrapositive law: P ⇒ Q ≡∼ Q⇒∼ P.

5. Use truth tables to prove the law of material implication: P ⇒ Q ≡∼ P ∨Q

6. Use truth tables to show the following logical equivalences for conditional statements.

(a) P ∨Q ≡∼ P ⇒ Q

(b) P ∧Q ≡∼ (P ⇒∼ Q)

(c) P∧ ∼ Q ≡∼ (P ⇒ Q)

(d) P ⇒ (Q⇒ R) ≡ Q⇒ (P ⇒ R)

Solution:
P Q R Q⇒ R P ⇒ (Q⇒ R)
T T T T T
T T F F F
T F T T T
T F F T T
F T T T T
F T F F T
F F T T T
F F F T T

,

P Q R P ⇒ R Q⇒ (P ⇒ R)
T T T T T
T T F F F
T F T T T
T F F F T
F T T T T
F T F T T
F F T T T
F F F T T

.

(e) (P ⇒ Q) ∧ (P ⇒ R) ≡ P ⇒ (Q ∧R)

(f) (P ⇒ Q) ∨ (P ⇒ R) ≡ P ⇒ (Q ∨R)

(g) (P ⇒ R) ∧ (Q⇒ R) ≡ (P ∨Q)⇒ R

(h) (P ⇒ R) ∨ (Q⇒ R) ≡ (P ∧Q)⇒ R

Solution:
P Q R P ⇒ R Q⇒ R (P ⇒ R) ∨ (Q⇒ R)
T T T T T T
T T F F F F
T F T T T T
T F F F T T
F T T T T T
F T F T F T
F F T T T T
F F F T T T

,

P Q R P ∧Q (P ∧Q)⇒ R
T T T T T
T T F T F
T F T F T
T F F F T
F T T F T
F T F F T
F F T F T
F F F F T

.
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7. Use truth tables to show the following logical equivalences for biconditional statements.

(a) P ⇔ Q ≡ Q⇔ P

(b) P ⇔ Q ≡∼ Q⇔∼ P
Solution:
P Q P ⇔ Q
T T T
T F F
F T F
F F T

,

P Q ∼ Q ∼ P ∼ Q⇔∼ P
T T F F T
T F T F F
F T F T F
F F T T T

(c) P ⇔ (Q⇔ R) ≡ (P ⇔ Q)⇔ R

Solution:
P Q R Q⇔ R P ⇔ (Q⇔ R)
T T T T T
T T F F F
T F T F F
T F F T T
F T T T F
F T F F T
F F T F T
F F F T F

,

P Q R P ⇔ Q (P ⇔ Q)⇔ R
T T T T T
T T F T F
T F T F F
T F F F T
F T T F F
F T F F T
F F T T T
F F F T F

.

(d) (P ⇒ Q) ∧ (Q⇒ P ) ≡ (P ⇔ Q)

(e) P ⇔ Q ≡∼ (P ∧Q) ∨ (∼ P∧ ∼ Q)

(f) ∼ (P ⇔ Q) ≡ P ⇔∼ Q

8. Recall that a tautology is a statement that is true for every possible assignment of truth values, and
a contradiction is a statement that is false for every possible assignment. Figure out which of the
following statements are tautologies, contradictions, or neither. You can use a truth table if you like,
but you may not need to.

(a) P ⇒ P

(b) P ⇒∼ P [Answer: Neither]

(c) P ⇒ (P ∨Q)

(d) (P ∧ Q) ⇒ Q [Answer: Tautology. We could make a truth table, or use the fact that if both P
and Q are true then Q must be true.]

(e) (P ⇒ Q) ∨ (Q⇒ P )

(f) P ⇔∼ P [Answer: Contradiction]

(g) P ⇒ (P ⇔∼ P )

(h) P ⇒ (P ⇔ Q) [Answer: Neither. The statement may be true or false. It’s certainly true if both
P and Q are true. If P is true and Q is false, however, the statement would be false.]

(i) (P ⇔ Q) ⇒ (P ⇒ Q) [Answer: Tautology. Suppose P ⇔ Q is true so P and Q have the same
truth values. Then it is impossible for the second half to be false because that would require P to
be true and Q to be false.]
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(j) ((P ⇒ Q) ∧ (Q⇒ P ))⇒ (P ⇔ Q)

9. Assume each of the sentences below are false. What can you conclude about the truth values of the
parts? Note that there are two ways to do this. You can either draw a truth tables and see where the
statements are false or you can try to reason through from what you know about condition statements.

(a) (P ∧Q)⇒ R

(b) P ⇒ (Q ∨R)

(c) P ∨ (P ⇔ Q)

(d) ∼ P ⇒ (P ⇔∼ R) [Answer: P and R must both be false.]

(e) ∼ (∼ P ∨Q)⇒ (∼ R)

(f) (∼ P ⇔ Q)∧ ∼ Q [Answer: P must be true and Q must be false.]

10. When the parenthesis are left out we can rely on an “order of operations” just as we do for addition,
multiplication and the other standard operations on real numbers. We use ∼ > ∧ > ∨ > ⇒ > ⇔
when there are no parenthesis. This means ∼ takes priority over all the others, with ∧ second and so
on. When operations are equal we work from left to right. Place parenthesis according to this order of
operations to remove any possible ambiguity for an outsider without this knowledge.

(a) P ∧Q ∨R [Answer: (P ∧Q) ∨R.]
(b) P ∨Q ∧R [Answer: P ∨ (Q ∧R).]

(c) P∧ ∼ Q∨ ∼ R [Answer: (P ∧ (∼ Q)) ∨ (∼ R).]

(d) ∼ P∨ ∼ Q∨ ∼ P [Answer: ((∼ P ) ∧ (∼ Q)) ∨ (∼ P ).]

(e) P ⇒ Q ∧ P ⇒ R [Answer: (P ⇒ (Q ∧ P ))⇒ R.]

(f) P ⇔ Q ∧ P ⇒ R [Answer: P ⇔ ((Q ∧ P )⇒ R).]
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1.3 Quantifiers

Since mathematical statements can be communicated through both language and symbols in many ways,
note that there will be many correct answers to some of the following questions.

1. Translate the following English sentences into statements involving open sentences with quantifiers. All
these statements are true over the universe of positive whole numbers.

(a) There is a number less than two.

(b) Every number is bigger than or equal to one. [Answer: (∀n)(n > 1)∨ (n = 1). We could also write
(∀n)(n ≥ 1).]

(c) There is a number bigger than two and less than eight.

(d) Every number has a number bigger than it. [Answer: (∀n)(∃m)(m > n).]

(e) Every number has a square. [Answer: (∀n)(∃m)(m = n2).]

(f) The sum of two numbers is bigger than either of the numbers. [Answer: (∀m)(∀n)(m + n >
m) ∧ (m+ n > n).]

2. Translate the following statements into simple English sentences. All these statements are true over
the universe of positive whole numbers.

(a) (∀x)(x2 ≥ x) [Answer: The square of number is greater than or equal to that number.]

(b) (∀x)(x < 5) ∨ (x > 4).

(c) (∀x)(∃y)(y ≤ x)

(d) (∀x)(∀y)(∃z)(x + y = z) [Answer: The sum of two positive whole numbers is a positive whole
number.]

(e) (∀x)(∀y)(∃z)(xy = z)

(f) (∃x)(∀y)(xy = y)

(g) (∃x)(x is prime) ∧ (x > 100) [Answer: There is a prime number bigger than a hundred.]

(h) (∀x)(∃y)(y is prime ) ∧ (y > x) [Answer: Every number is less than some prime number.]

3. The following statements are false over the universe of positive whole numbers. Negate them, and pass
the negation through the quantifiers to construct a new and true statement. Make sure you understand
why this new statement is true.

(a) (∀x)(x < 5)

(b) (∃x)(x < 5) ∧ (x > 5).

(c) (∀x)(∃y)(y < x)

(d) (∀x)(∀y)(xy = y) [Answer: (∃x)(∃y)(xy 6= y). Here, any x except for one does the trick.]

(e) (∃x)(x is prime) ∧ (x < 2) [Answer: (∀x)(x fails to be prime) ∨ (x ≥ 2.)]

(f) There is a prime number between 200 and 210. [Answer: (∀n)(n ≤ 200)∨(n ≥ 210)∨ ∼ (n prime).]

(g) (∀x)(∀y)(∀z)(x+ y = z)
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(h) (∀x)(∀z)(∃y)(x+ y = z)

(i) (∀z)(∃x)(∃y)(x+ y = z) [Answer: (∃z)(∀x)(∀y)(x+ y 6= z). This is definitely true as z is allowed
to equal one.]

4. Translate the following statements involving open sentences with quantifiers into normal English sen-
tences then state whether the sentence is true or false for the collection of all whole numbers (both
positive and negative.)

(a) (∀x)(2x 6= x) [Answer: No number is equal to its double. False. (Remember zero.)]

(b) (∀x)(x is even)⇒ (x2 is even)

(c) (∀x)(x2 is even)⇒ (x is even) [Answer: If the square of a number is even then that number must
be even. True.]

(d) (∀x)(x is odd)⇒ (x3 is odd)

(e) (∀x)(x is prime) ∧ (x is even)⇒ (x = 2) [Answer: An even prime must equal 2. True]

(f) (∃x)(∃y) y < x

(g) (∀x)(∃y) y < x

(h) (∃x)(∀y) y < x

(i) (∀x)(∃y) x < y < 2x [Answer: Given any number, we can find another number between that
number and its double. False. (This is only true for numbers bigger than one.)]

(j) (∀x)(∀y)(x+ y > x) ∧ (x+ y > y) [Answer: The sum of two numbers is always bigger than either
of the numbers. False. (Remember the negatives.)]

(k) (∀x)(∀y)(∃z) y 6= x⇒ (x < z < y) ∨ (y < z < x) [Answer: For any two different integers, there is
an integer between them. False.]

5. State whether the following sentences are true over the different universes U1 = N, U2 = Z, and U3 =
the set of prime numbers.

(a) (∃x) x < 2

(b) (∀x) x ≥ 2

(c) (∃x) x > 89 ∧ x < 97

(d) (∀x)(∃y) y < x [Answers: U1 = F,U2 = T,U3 = F ]

(e) (∀x)(∃y) y > x [Answers: U1 = T,U2 = T,U3 = T ]

(f) (∃x)(∀y) y < x

(g) (∃x)(∀y) y > x

(h) (∃x)(∀y) y ≥ x
(i) (∀x)(∀y)(∃z) x+ y = z [Answers: U1 = T,U2 = T,U3 = F ]

(j) (∀x)(∀y)(∃z) x− y = z

(k) (∀x)(∀y) y 6= 2x [Answers: U1 = F,U2 = F,U3 = T ]

6. State whether the following sentences are true over the real numbers.
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(a) (∃x)(∃y) y < x [Answer: True]

(b) (∃x)(∀y) y < x [Answer: False]

(c) (∀x)(∃y) y < x [Answer: True]

(d) (∀x)(∀y) y < x [Answer: False]

(e) (∃x)(∃y) y = x2 [Answer: True]

(f) (∃x)(∀y) y = x2 [Answer: False]

(g) (∀x)(∃y) y = x2 [Answer: True]

(h) (∀x)(∀y) y = x2 [Answer: False]

(i) (∀y)(∃x) y = x2 [Answer: False]

(j) (∀x)(∃y) 0 < y < x [Answer: False]

(k) (∀x)(∀y) xy = 0 [Answer: False]

(l) (∃x)(∀y) xy = 0 [Answer: True]

(m) (∀x)(∃y) xy = 0 [Answer: True]

(n) (∃x)(∃y) xy = 0 [Answer: True]

(o) (∀x)(∃y) xy = 1 [Answer: False]

(p) (∃x)(∃y) xy = 1 [Answer: True]

(q) (∃x)(∀y) xy = 1 [Answer: False]

(r) (∃x) x2 > x [Answer: True]

(s) (∃x) x/2 < x [Answer: True]

(t) (∀x) x2 > x [Answer: False]

(u) (∀x) x/2 < x [Answer: False]

(v) (∀x)(∃y) xy < 1[Answer: True]

(w) (∃x)(∃y) xy < 1[Answer: True]

(x) (∃x)(∀y) xy < 1[Answer: True]

(y) (∀n)(∃x)(∃y) (x+ y)n = xn + yn [Answer: True]

(z) (∃n)(∀x)(∀y) (x+ y)n = xn + yn [Answer: True]
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1.4 Sets, Subsets, and Cardinality

1. Find the cardinality of the following sets. Remember this is the same as asking for the number of
elements in the set.

(a) {1, 2} [Answer: 2]

(b) {2, 3} [Answer: 2]

(c) {1, {1, 2}} [Answer: 2]

(d) {{1}, {1, 2}} [Answer: 2]

(e) {{1, 2}} [Answer: 1]

(f) {{1, 2, 3, 4}} [Answer: 1]

(g) {1, {1}, {{1}}, {{{1}}}} [Answer: 4]

(h) {{1, {1}, {{1}}, {{{1}}}}} [Answer: 1]

(i) {1, 2, {1}, {2}, {1, 2}} [Answer: 5]

(j) {1, 2, {1}, {2}, {1, 2}, {{1}, 2}, {1, {2}}, {{1, 2}}} [Answer: 8]

(k) ∅ [Answer: 0]

(l) {∅} [Answer: 1]

(m) {{∅}} [Answer: 1]

(n) {{{∅}}} [Answer: 1]

(o) {{∅, {∅}}} [Answer: 1]

(p) {∅, {∅}} [Answer: 2]

(q) {∅, {∅}, {{∅}}} [Answer: 3]

(r) {{∅, {∅}}, {{∅}}} [Answer: 2]

(s) {∅, {{∅}, {{∅}}}} [Answer: 2]

(t) {{∅, {∅}, {{∅}}}} [Answer: 1]

2. State whether the following are true or false:

(a) 1 ∈ {1} [Answer: True]

(b) 1 ∈ {1, 2} [Answer: True]

(c) 1 ∈ {{1}} [Answer: False]

(d) 1 ∈ {{1}, 1} [Answer: True]

(e) 1 ∈ {{1}, 2} [Answer: False]

(f) 1 ∈ {{2}, 1} [Answer: True]

(g) {1} ∈ {1} [Answer: False]

(h) {1} ∈ {{1}} [Answer: True]

(i) {1} ∈ {{{1}}} [Answer: False]
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(j) {{1}} ∈ {{{1}}} [Answer: True]

(k) {1, 2} ∈ {{1}, {2}} [Answer: False]

(l) {1, 2} ∈ {{1, 2}} [Answer: True]

(m) {1, 2} ∈ {{1}, {2}, {1, 2}} [Answer: True]

(n) {1, 2} ∈ {{{1}, {2}}} [Answer: False]

(o) {1, 2} ∈ {{{1}, {2}, {1, 2}}} [Answer: False]

(p) {1, 2} ∈ {{{1}, {2}}, {1, 2}} [Answer: True]

(q) {1, 2} ∈ {{{1}, {2}, {1, 2}}, {1, 2}} [Answer: True]

(r) {1, 2} ∈ {{{1}, {2}, {1, 2}}, {1}, {2}, {1, 2}} [Answer: True]

(s) {{1, 2}} ∈ {{{1}, {2}, {1, 2}}, {1}, {2}, {1, 2}} [Answer: False]

(t) {{1}, {2}, {1, 2}} ∈ {{{1}, {2}, {1, 2}}, {1}, {2}, {1, 2}} [Answer: True]

(u) 1 ∈ {{{1}, {2}, {1, 2}}, {1}, {2}, {1, 2}} [Answer: False]

3. State whether the following are true or false:

(a) ∅ ∈ ∅ [Answer: False]

(b) ∅ ∈ {∅} [Answer: True]

(c) ∅ ∈ {{∅}} [Answer: False]

(d) ∅ ∈ {{{∅}}} [Answer: False]

(e) {∅} ∈ ∅ [Answer: False]

(f) {∅} ∈ {∅} [Answer: False]

(g) {∅} ∈ {{∅}} [Answer: True]

(h) {∅} ∈ {{{∅}}} [Answer: False]

(i) ∅ ∈ {∅, {∅}} [Answer: True]

(j) {∅} ∈ {∅, {∅}} [Answer: True]

(k) ∅ ∈ {{∅, {∅}}} [Answer: False]

(l) {∅} ∈ {{∅, {∅}}} [Answer: False]

(m) {∅, {∅}} ∈ {{∅, {∅}}} [Answer: True]

(n) {∅, {∅}} ∈ {∅, {∅, {∅}}} [Answer: True]

(o) ∅ ∈ {∅, {∅, {∅}}} [Answer: True]

(p) {∅} ∈ {∅, {∅, {∅}}} [Answer: False]

(q) {∅} ∈ {∅, {∅}, {∅, {∅}}} [Answer: True]

(r) {∅, {∅}, {∅, {∅}}} ∈ {∅, {∅}, {∅, {∅}}} [Answer: False]

4. State whether the following are true or false:

(a) 1 ⊆ {1} [Answer: False]

(b) 1 ⊆ {{1}} [Answer: False]
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(c) {1} ⊆ {1} [Answer: True]

(d) {1} ⊆ {{1}} [Answer: False]

(e) {1} ⊆ {1, {1}} [Answer: True]

(f) {1} ⊆ {1, 2, {1}, {2}, {1, 2}} [Answer: True]

(g) {1, 2} ⊆ {1, 2, {1}, {2}, {1, 2}} [Answer: True]

(h) {1, 2} ⊆ {2, {1}, {2}, {1, 2}} [Answer: False]

(i) {1, 2} ⊆ {1, {1}, {2}, {1, 2}} [Answer: False]

(j) {1} ⊆ {{{1}}} [Answer: False]

(k) {{1}} ⊆ {1, {{1}}} [Answer: False]

(l) {{1}} ⊆ {1, {1}, {{1}}} [Answer: True]

(m) {1, 2} ⊆ {1, 2} [Answer: True]

(n) {1, 2} ⊆ {{1}, {2}} [Answer: False]

(o) {1, 2} ⊆ {{1, 2}} [Answer: False]

(p) {1, 2} ⊆ {1, 2, {1}, {2}, {1, 2}} [Answer: True]

(q) {1, 2} ⊆ {{{1}, {2}, {1, 2}}} [Answer: False]

(r) {1, 2} ⊆ {{{1}, {2}, {1, 2}}, {1, 2}} [Answer: False]

(s) {1, 2} ⊆ {{{1}, {2}, {1, 2}}, {1}, {2}, {1, 2}} [Answer: False]

(t) {{1, 2}} ⊆ {{{1}, {2}}, {1, 2}} [Answer: True]

(u) {{1, 2}} ⊆ {1, 2, {1}, {2}} [Answer: False]

(v) {{1, 2}} ⊆ {{{1}, {2}, {1, 2}}, {1}, {2}, {1, 2}} [Answer: True]

(w) {1, {2}} ⊆ {1, 2, {1}, {2}, {1, 2}} [Answer: True]

(x) {1, {2}} ⊆ {{{1}, {2}, {1, 2}}, {1}, {2}, {1, 2}} [Answer: False]

(y) {1, {2}} ⊆ {1, 2, {1, 2}} [Answer: False]

(z) {{1}, {2}, {1, 2}} ⊆ {{{1}, {2}, {1, 2}}, {1}, {2}, {1, 2}} [Answer: True]

5. State whether the following are true or false:

(a) ∅ ⊆ ∅ [Answer: True]

(b) ∅ ⊆ {∅} [Answer: True]

(c) ∅ ⊆ {{∅}} [Answer: True]

(d) ∅ ⊆ {{{∅}}} [Answer: True]

(e) {∅} ⊆ ∅ [Answer: False]

(f) {∅} ⊆ {∅} [Answer: True]

(g) {∅} ⊆ {{∅}} [Answer: False]

(h) {∅} ⊆ {{{∅}}} [Answer: False]

(i) ∅ ⊆ {∅, {∅}} [Answer: True]
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(j) {∅} ⊆ {∅, {∅}} [Answer: True]

(k) ∅ ⊆ {{∅, {∅}}} [Answer: True]

(l) {∅} ⊆ {{∅, {∅}}} [Answer: False]

(m) {∅, {∅}} ⊆ {{∅, {∅}}} [Answer: False]

(n) {∅, {∅}} ⊆ {∅, {∅, {∅}}} [Answer: False]

(o) ∅ ⊆ {∅, {∅, {∅}}} [Answer: True]

(p) {∅} ⊆ {∅, {∅, {∅}}} [Answer: True]

(q) {∅} ⊆ {∅, {∅}, {∅, {∅}}} [Answer: True]

(r) {∅, {∅}, {∅, {∅}}} ⊆ {∅, {∅}, {∅, {∅}}} [Answer: True]

(s) {∅, {∅}} ⊆ {∅, {∅}, {∅, {∅}}} [Answer: True]

(t) {∅, {∅, {∅}}} ⊆ {∅, {∅}, {∅, {∅}}} [Answer: True]

(u) {{∅}, {∅, {∅}}} ⊆ {∅, {∅}, {∅, {∅}}} [Answer: True]

(v) {∅, {∅}} ⊆ {{∅}, {∅, {∅}}} [Answer: False]

(w) {∅, {∅, {∅}}} ⊆ {{∅}, {∅, {∅}}} [Answer: False]

(x) {{∅}, {∅, {∅}}} ⊆ {{∅}, {∅, {∅}}} [Answer: True]

(y) {{∅, {∅}}} ⊆ {{∅}, {∅, {∅}}} [Answer: True]

(z) {{∅}} ⊆ {{∅}, {∅, {∅}}} [Answer: True]
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1.5 Power Sets

1. Find the cardinality of the following sets. Recall that the power set of a set with n elements always
has 2n elements.

(a) P({1}) [Answer: 2]

(b) P({1, 2}) [Answer: 4]

(c) P({1, 2, 3, 4}) [Answer: 16]

(d) P({1, {1}}) [Answer: 4]

(e) P(∅) [Answer: 1]

(f) P({∅}) [Answer: 2]

(g) P({{∅}}) [Answer: 2]

(h) P({{{∅}}}) [Answer: 2]

(i) P({{∅, {∅}}}) [Answer: 2]

(j) P({∅, {∅}}) [Answer: 4]

(k) P({∅, {∅}, {{∅}}}) [Answer: 8]

(l) P({{∅, {∅}}, {{∅}}}) [Answer: 4]

(m) P({∅, {{∅}, {{∅}}}}) [Answer: 4]

(n) P({{∅, {∅}, {{∅}}}}) [Answer: 2]

2. State whether the following statements are true or false.

(a) 1 ∈ P({1, 2}) [Answer: False]

(b) {1} ∈ P({1}) [Answer: True]

(c) {1} ∈ P({1, 2}) [Answer: True]

(d) {1} ∈ P({{1, 2}}) [Answer: False]

(e) {1, 2} ∈ P({{1, 2}}) [Answer: False]

(f) {1, 2} ∈ P({{1}, {2}}) [Answer: False]

(g) {1, 2} ∈ P({1, 2}) [Answer: True]

(h) {{1}} ∈ P({{1, 2}}) [Answer: False]

(i) {{1}} ∈ P({{1}, {2}}) [Answer: True]

(j) {1, 2} ∈ P({1, 2, {1, 2}}) [Answer: True]

3. State whether the following statements are true or false.

(a) ∅ ∈ P(∅) [Answer: True]

(b) ∅ ∈ P({{{∅}}}) [Answer: True]

(c) {∅} ∈ P(∅) [Answer: False]

(d) {∅} ∈ P({∅}) [Answer: True]
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(e) {∅} ∈ P({{∅}}) [Answer: False]

(f) {∅} ∈ P({{∅, {∅}}}) [Answer: False]

(g) {∅, {∅}} ∈ P({{∅, {∅}}}) [Answer: False]

(h) {∅, {∅}} ∈ P({∅, {∅, {∅}}}) [Answer: False]

(i) {∅, {∅}} ∈ P({∅, {∅}, {∅, {∅}}}) [Answer: True]

(j) {∅, {∅, {∅}}} ∈ P({∅, {∅}, {∅, {∅}}}) [Answer: True]

4. State whether the following statements are true or false.

(a) {1} ⊆ P({1}) [Answer: False]

(b) {1} ⊆ P({{1}}) [Answer: False]

(c) {{1}} ⊆ P({1}) [Answer: True]

(d) {{1}} ⊆ P({1, 2}) [Answer: True]

(e) {{1, 2}} ⊆ P({1, 2}) [Answer: True]

(f) {{1, 2}} ⊆ P({{1, 2}}) [Answer: False]

(g) {{1}, {2}} ⊆ P({1, 2}) [Answer: True]

(h) {{1}, {2}} ⊆ P({{1, 2}}) [Answer: False]

(i) {{1}, {2}, {1, 2}} ⊆ P({1, 2}) [Answer: True]

(j) {{1}, {2}, {1, 2}} ⊆ P({{1, 2, {1}}}) [Answer: True]

(k) {{1}, {2}, {1, 2}} ⊆ P({1, 2, {1}}) [Answer: True]

5. State whether the following statements are true or false.

(a) ∅ ⊆ P(∅) [Answer: True]

(b) {∅} ⊆ P(∅) [Answer: True]

(c) {∅} ⊆ P({∅}) [Answer: True]

(d) {∅} ⊆ P({{∅}}) [Answer: True]

(e) {{∅}} ⊆ P({∅}) [Answer: True]

(f) {∅, {∅}} ⊆ P({∅}) [Answer: True]

(g) {∅, {{∅}}} ⊆ P({∅}) [Answer: False]

(h) {{∅, {∅}}} ⊆ P({∅}) [Answer: False]

(i) P(∅) ⊆ P(∅) [Answer: True]

(j) P(∅) ⊆ P({∅}) [Answer: True]

(k) P(∅) ⊆ P({{∅}}) [Answer: True]

(l) P({∅}) ⊆ P(∅) [Answer: False]

(m) P({∅}) ⊆ P({∅}) [Answer: True]

(n) P({∅}) ⊆ P({{∅}}) [Answer: False]

(o) P({{∅}}) ⊆ P({∅}) [Answer: False]
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(p) P({∅, {∅}}) ⊆ P({∅}) [Answer: False]

(q) P({∅}) ⊆ P({∅, {∅}}) [Answer: True]

(r) {{∅, {∅}}} ⊆ {P({∅})} [Answer: True]

6. Find the cardinality of the following sets.

(a) P(P({1}) [Answer: 4]

(b) P(P({{1}}) [Answer: 4]

(c) P(P({{1, 2}}) [Answer: 4]

(d) P(P({1, 2}) [Answer: 16]

(e) P(P(∅)) [Answer: 2]

(f) P(P(P(∅))) [Answer: 4]

(g) P(P(P(P(∅)))) [Answer: 16]

(h) P(P({∅})) [Answer: 4]

(i) P(P(P({∅}))) [Answer: 16]

(j) P(P(P({∅, {∅}}))) [Answer: 65536]
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1.6 Cartesian Products

1. Let A = {1, 2, 4} be the positive divisors of four, B = {1, 5} be the positive divisors of five, and C = {1}
be the positive divisors of one. Find the following sets.

(a) A×B [Answer: {(1, 1), (1, 5), (2, 1), (2, 5), (4, 1), (4, 5)}.]
(b) A× C [Answer: {(1, 1), (2, 1), (4, 1)}.]
(c) B × C [Answer: {(1, 1), (5, 1)}.]
(d) B ×B [Answer: {(1, 1), (5, 1), (1, 5), (5, 5)}.]
(e) C × C [Answer: {(1, 1)}.]
(f) (A ∪B)× C [Answer: {1, 2, 4, 5} × C = {(1, 1), (2, 1), (4, 1), (5, 1)}.]
(g) (A× C) ∪ (B × C) [Answer: {(1, 1), (2, 1), (4, 1)} ∪ {(1, 1), (5, 1)} = {(1, 1), (2, 1), (4, 1), (5, 1)}.]
(h) (A ∩B)× C [Answer: {1} × C = {(1, 1)}.]
(i) (A× C) ∩ (B × C) [Answer: {(1, 1), (2, 1), (4, 1)} ∩ {(1, 1), (5, 1)} = {(1, 1)}.]
(j) A× (B − C) [Answer: A× {5} = {(1, 5), (2, 5), (4, 5)}.]
(k) (A×B)−(A×C) [Answer: {(1, 1), (1, 5), (2, 1), (2, 5), (4, 1), (4, 5)}−{(1, 1), (2, 1), (4, 1)} = {(1, 5), (2, 5), (4, 5)}.]
(l) A× ∅ [Answer: ∅.]

(m) {A× {∅}} [Answer: {(1, ∅), (2, ∅), (4, ∅)}.]
(n) {A× {{∅}}} [Answer: {(1, {∅}), (2, {∅}), (4, {∅})}.]
(o) {A× {∅, {∅}}} [Answer: {(1, ∅), (2, ∅), (4, ∅), (1, {∅}), (2, {∅}), (4, {∅})}.]
(p) ∅ × ∅ [Answer: ∅.]
(q) {∅} × ∅ [Answer: ∅.]
(r) ∅ × {∅} [Answer: ∅.]
(s) {∅} × {∅} [Answer: {(∅, ∅)}.]
(t) {∅, {∅}} × {∅} [Answer: {(∅, ∅), ({∅}, ∅)}.]
(u) {∅, {∅}, {∅, {∅}}} × ∅ [Answer: ∅.]
(v) {∅, {∅}, {∅, {∅}}} × {∅, {∅}, {∅, {∅}}} [Answer: {(∅, ∅), (∅, {∅}), (∅, {∅, {∅}}), ({∅}, ∅), ({∅}, {∅}),

({∅}, {∅, {∅}}), ({∅, {∅}}, ∅), ({∅, {∅}}, {∅}), ({∅, {∅}}, {∅, {∅}})}.]

2. Find the cardinality of the following sets:

(a) {1} × {1} [Answer: 1]

(b) {1} × {2} [Answer: 1]

(c) {1} × {1, 2} [Answer: 2]

(d) {1, 2} × {1, 2} [Answer: 4]

(e) {1, 2} × {{1}, {2}} [Answer: 4]

(f) {1, 2} × {{1, 2}} [Answer: 2]

(g) {{1, 2}} × {{1, 2}} [Answer: 1]
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(h) {{1}, 2} × {1, {2}} [Answer: 4]

(i) {1, 2, 3} × {1, 2} [Answer: 6]

(j) {{1}, {2}, {1, 2}} × {1, {2}} [Answer: 6]

(k) ∅ × ∅ [Answer: 0]

(l) ∅ × {∅} [Answer: 0]

(m) {∅} × ∅ [Answer: 0]

(n) ∅ × {{∅}} [Answer: 0]

(o) ∅ × {∅, {∅}} [Answer: 0]

(p) {∅} × {∅} [Answer: 1]

(q) {∅} × {{∅}} [Answer: 1]

(r) {{∅}} × {{∅}} [Answer: 1]

(s) {∅} × {∅, {∅}} [Answer: 2]

(t) {∅, {∅}} × {∅, {∅}, {{∅}}} [Answer: 6]

(u) {∅, {∅}, {{∅}}} × {∅, {∅}, {{∅}}} [Answer: 9]

(v) {{∅, {∅}, {{∅}}}} × {{∅, {∅}, {{∅}}}} [Answer: 1]

(w) {{{∅, {∅}, {{∅}}}} × {{∅, {∅}, {{∅}}}}} [Answer: 1]

3. Find the cardinality of the following sets:

(a) P({1} × {2}) [Answer: 2]

(b) P({1} × {1, 2}) [Answer: 4]

(c) P({1} × {1, 2, 3}) [Answer: 8]

(d) P({1, 2, 3} × {1, 2, 3}) [Answer: 512]

(e) P({1, 2, 3} × {{1, 2, 3}}) [Answer: 8]

(f) P(∅ × ∅) [Answer: 1]

(g) P(∅ × {{∅}}) [Answer: 1]

(h) P({∅} × {∅}) [Answer: 2]

(i) P({{∅}} × {{∅}}) [Answer: 2]

(j) P({∅} × {∅, {∅}}) [Answer: 4]

(k) P({∅, {∅}} × {∅, {∅}, {{∅}}}) [Answer: 64]

(l) P({1})× P({2}) [Answer: 4]

(m) P({1})× P({1, 2}) [Answer: 8]

(n) P({1})× P({1, 2, 3}) [Answer: 16]

(o) P({1, 2, 3})× P({1, 2, 3}) [Answer: 64]

(p) P({1, 2, 3})× P({{1, 2, 3}}) [Answer: 16]

(q) P(∅)× P(∅) [Answer: 1]
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(r) P(∅)× P({{∅}}) [Answer: 2]

(s) P({∅})× P({∅}) [Answer: 4]

(t) P({{∅}})× P({{∅}}) [Answer: 4]

(u) P({∅})× P({∅, {∅}}) [Answer: 8]

(v) P({∅, {∅}})× P({∅, {∅}, {{∅}}}) [Answer: 32]
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1.7 Operations on Sets

1. Let A = {1, 2}, B = {2, 3}, C = {3, 4} be sets in the universe U = {1, 2, 3, 4, 5}. Compute the following
sets.

(a) A ∪ C [Answer: {1, 2, 3, 4}]
(b) A ∩ C [Answer: ∅]
(c) (A ∪ C)C [Answer: {5}]
(d) (AC ∪ CC) [Answer: U ]

(e) (A ∪B) ∩ C [Answer: {3}]
(f) (A ∩B) ∪ C [Answer: {2, 3, 4}]
(g) A ∪ ∅ [Answer: A]

(h) A ∩ ∅ [Answer: ∅]
(i) A ∩A [Answer: A]

(j) A ∪A [Answer: A]

(k) A−A [Answer: ∅]
(l) A− ∅ [Answer: A]

(m) ∅ −A [Answer: ∅]
(n) ∅ − ∅ [Answer: ∅]
(o) ∅ ∩ ∅ [Answer: ∅]
(p) ∅ ∪ ∅ [Answer: ∅]
(q) AC [Answer: {3, 4, 5}]
(r) (AC)C [Answer: A]

(s) (A−B) ∪ (B −A) [Answer: {1, 3}]
(t) (A−B) ∩ (B −A) [Answer: ∅]
(u) UC [Answer: ∅]
(v) A− U [Answer: ∅]
(w) U −A [Answer: {3, 4, 5}]

2. Let A = {2, 4, 6, 8, 10, 12, 14}, B = {3, 6, 9, 12, 15}, C = {5, 10, 15} be sets in the universe U = {n ∈ N :
n ≤ 15}. Compute the following sets.

(a) A ∪B [Answer: {2, 3, 4, 6, 9, 8, 10, 12, 14, 15}]
(b) A ∪ C [Answer: {2, 4, 5, 6, 8, 10, 12, 14, 15}]
(c) B ∪ C [Answer: {3, 5, 6, 9, 10, 12, 15}]
(d) A ∩B [Answer: {6, 12}]
(e) A ∩ C [Answer: {10}]
(f) B ∩ C [Answer: {15}]
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(g) A ∩B ∩ C [Answer: ∅]
(h) A ∩ (B ∪ C) [Answer: {6, 10, 12}]
(i) (A ∩B) ∪ C [Answer: {5, 6, 10, 12, 15}]
(j) A ∪ (B ∩ C) [Answer: {2, 4, 6, 8, 10, 12, 14, 15}]
(k) (A ∪B) ∩ C [Answer: {10, 15}]
(l) A−B [Answer: {2, 4, 8, 10, 14}]

(m) B −A [Answer: {3, 9, 15}]
(n) A− (B ∩ C) [Answer: A− {15} = A]

(o) (A−B) ∩ C [Answer: {2, 4, 8, 10, 14} ∩ C = {10}]
(p) B − (A ∩ C) [Answer: B − {10} = B]

(q) (B −A) ∩ C [Answer: {3, 9, 15} ∩ C = {15}]
(r) A− (B − C) [Answer: A− {3, 6, 9, 12} = {2, 4, 8, 10, 14}]
(s) (A−B)− C [Answer: {2, 4, 8, 10, 14} − C = {2, 4, 8, 14}]
(t) AC [Answer: {1, 3, 5, 7, 9, 11, 13, 15}]
(u) A ∩AC [Answer: ∅]
(v) A ∪AC [Answer: U ]

(w) A ∩BC [Answer: {2, 4, 8, 10, 14}]
(x) A ∪BC [Answer: {U − {3, 9, 15}}]
(y) AC − CC [Answer: {5, 15}]
(z) (A− C)C [Answer: {2, 4, 6, 8, 12, 14}C = {1, 3, 5, 7, 9, 10, 11, 13, 15}]

3. Let Ak = {nk : n ∈ N}. Compute the following sets. [Note: For example A1 = N, A2 = {2, 4, 6, 8, · · · },
A3 = {3, 6, 9, · · · }, A4 = {4, 8, 12, · · · } and so on.]

(a) A1 ∩A2 [Answer: {2, 4, 6, · · · } = A2]

(b) A1 ∪A3 [Answer: {1, 2, 3, · · · } = A1]

(c) A2 ∩A3 [Answer: {6, 12, 18, · · · } = A6]

(d) A4 ∩A2 [Answer: {4, 8, 12, · · · } = A4]

(e) A3 ∪A5 [Answer: {3, 5, 6, 9, 10, 12, 15, 18, 20, 21, 24, 25, · · · }]
(f) A1 ∪ (A2 ∪A3) [Answer: A1 ∪ {2, 3, 4, 6, 8, 9, 10, 12, 14, 15, · · · } = A1]

(g) (A1 ∪A2) ∪A3 [Answer: A1 ∪A3 = A1]

(h) A1 ∩ (A2 ∩A3) [Answer: A1 ∩A6 = A6]

(i) (A1 ∩A2) ∩A3 [Answer: A2 ∩A3 = A6]

(j) A1 ∪ (A2 ∩A3) [Answer: A1 ∪A6 = A1]

(k) (A1 ∪A2) ∩A3 [Answer: A1 ∩A3 = A3]

(l) A15 ∪ (A3 ∩A5) [Answer: A15 ∪A15 = {15, 30, 45, · · · } = A15]
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(m) (A15 ∪A3) ∩A5 [Answer: A3 ∩A5 = {15, 30, 45, · · · } = A15]

(n) (A2 ∪A3) ∩A4 [Answer: {2, 3, 4, 6, 8, 9, 10, 12, 14, 15, · · · } ∩A4 = {4, 8, 12, · · · } = A4]

(o) A2 ∪ (A3 ∩A4) [Answer: A2 ∪A12 = {2, 4, 6, · · · } = A2]

(p) (A4 ∩A3)−A6) [Answer: A12 −A6 = ∅]
(q) A6 − (A4 ∩A3) [Answer: A6 −A12 = {6, 18, 30, 42, · · · } = {12n− 6 : n ∈ N}]
(r) (A1 −A2) ∩A3 [Answer: {1, 3, 5, 7, · · · } ∩A3 = {3, 9, 15, 21, · · · } = {6n− 3 : n ∈ N}]
(s) A1 − (A2 ∩A3) [Answer: A1 −A6 = {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, · · · } = Z−A6]

(t) (A1 −A2)−A3 [Answer: {1, 3, 5, 7, · · · } −A3 = {1, 5, 7, 11, 13, 17, 19, · · · }]
(u) A1 − (A2 − A3) [Answer: A1 − A6 = A1 − {2, 4, 8, 10, 14, 16, · · · } = {1, 3, 5, 6, 7, 9, 11, 13, 14,

15, · · · }]

4. Let Az = {x ∈ R : |x| ≤ z}, Bz = {x ∈ R : |x| ≥ z} and compute the following sets. [Note: For
example A2 = [−2, 2], A3 = [−3, 3], B0 = R, B1 = (−∞,−1] ∪ [1,∞), B4 = (−∞,−4] ∪ [4,∞) and so
on.]

(a) A1 ∩A2 [Answer: A1]

(b) A1 ∪A2 [Answer: A2]

(c) B1 ∩B2 [Answer: B2]

(d) B1 ∪B2 [Answer: B1]

(e) A1 ∩B1 [Answer: {−1, 1}]
(f) B1 ∩ N [Answer: N]

(g) B3/2 ∩ N [Answer: N− {1}]
(h) A1 ∩ N [Answer: {1}]
(i) A3/2 ∩ N [Answer: {1}]
(j) A1 ∩B2 [Answer: ∅]
(k) A2 ∩B1 [Answer: [−2, 1] ∪ [1, 2]]

(l) B1 −B2 [Answer: (−2, 1] ∪ [1, 2)]

(m) B2 −B1 [Answer: ∅]
(n) A1 −A2 [Answer: ∅]
(o) A2 −A1 [Answer: [−2, 1) ∪ (1, 2]]

(p) A1 −B1 [Answer: (−1, 1)]

(q) B1 −A1 [Answer: (−∞,−1) ∪ (1,∞)]
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1.8 Set Builder Notation

Note that there are many ways to express things in English sentences and also in set builder notation, so
each of these has many different answers. Only a few possibilities are included.

1. Translate the following sets described in set builder notation into English sentences. As there are many
ways to say the same thing in English, there will be many answers to each of these questions. Here we
list only one.

(a) {2n : n ∈ Z} [Answer: The even numbers.]

(b) {2n+ 2 : n ∈ Z} [Answer: The even numbers.]

(c) {n ∈ Z : n2 ∈ Z} [Answer: The even numbers.]

(d) {n ∈ Z : (n4 ∈ Z) ∨ (n+2
4 ∈ Z)} [Answer: The even numbers.]

(e) {n : n
2

4 ∈ Z} [Answer: The even numbers.]

(f) {2n : n ∈ N} [Answer: The positive even numbers.]

(g) {2n− 1 : n ∈ N} [Answer: The positive odd numbers.]

(h) {2n+ 3 : n ∈ Z} [Answer: The odd numbers.]

(i) {2n− 5 : n ∈ Z} [Answer: The odd numbers.]

(j) {n2 : n ∈ Z} [Answer: The set of perfect squares.]

(k) {(2n)2 : n ∈ N} [Answer: The set of even perfect squares.]

(l) {(2n− 1)2 : n ∈ N} [Answer: The set of odd perfect squares.]

(m) {(2n+ 1)2 : n ∈ N} [Answer: The set of odd perfect squares.]

(n) {2n : n ∈ N} [Answer: The set of powers of two that are bigger than one.]

(o) {n ∈ Z : |n| 6= n} [Answer: The negative integers.]

(p) {n ∈ Z :
√
n2 6= n} [Answer: The negative integers.]

(q) {n ∈ Z :
√
n2 = n} [Answer: The set of non-negative integers.]

(r) {n ∈ Z :
3
√
n3 = n} [Answer: The integers.]

(s) {n ∈ Z : |n| ≥ n} [Answer: The integers.]

(t) {n ∈ Z : |n| > n} [Answer: The negative integers.]

(u) {n+ 3 : n ∈ Z} [Answer: The integers.]

(v) {2n : (∃m ∈ Z) n = 3m} [The multiples of six.]

(w) {3n : (∃m ∈ Z) n = 2m} [The multiples of six.]

(x) {n ∈ Z : (n2 ∈ Z) ∧ (n3 ∈ Z)} [The multiples of six.]

(y) {6n− 216 : n ∈ Z} [The multiples of six.]

(z) {216− 6n : n ∈ Z} [The multiples of six.]

2. Translate the following sets described in set builder notation into listed form.
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(a) {2n+ 1 : n ∈ N} [Answer: {3, 5, 7, 9, · · · }.]
(b) {n− 1 : n ∈ N} [Answer: {0, 1, 2, 3, 4, 5, · · · }.]
(c) {(−1)n : n ∈ N}] [Answer: {−1, 1}.]
(d) {(−1)n+1 : n ∈ N}] [Answer: {−1, 1}.]
(e) {(−1)n : n ∈ Z}] [Answer: {−1, 1}.]
(f) {cos(πn) : n ∈ N}] [Answer: {−1, 1}.]
(g) {n ∈ Z : n2 = 1}] [Answer: {−1, 1}.]
(h) {n ∈ Q : n2 = 1}] [Answer: {−1, 1}.]
(i) {n ∈ R : n2 = 1}] [Answer: {−1, 1}.]

(j) {n ∈ R : n
3−n
n = 0}] [Answer: {−1, 1}.]

(k) {3(n− 1) : n ∈ N} [Answer: {0, 3, 6, 9, 12, 15, · · · }.]
(l) {3n− 2 : n ∈ N} [Answer: {1, 4, 7, 10, 13, 16, · · · }.]

(m) {3n+ 1 : n ∈ N} [Answer: {4, 7, 10, 13, 16, · · · }.]
(n) {3n− 2 : n ∈ Z} [Answer: {· · · ,−8,−5,−2, 1, 4, 7, 10, 13, 16, · · · }.]
(o) {3n : n ∈ Z} [Answer: {· · · ,−9,−6,−3, 0, 3, 6, 9, · · · }.]
(p) {4n+ 1 : n ∈ N} [Answer: {5, 9, 13, 17, 21, · · · }.]
(q) {4n+ 1 : n ∈ Z} [Answer: {· · · ,−7,−3, 1, 5, 9, 13, 17, 21, · · · }.]
(r) {4n+ 3 : n ∈ Z} [Answer: {· · · ,−9,−5,−1, 3, 7, 11, 15, · · · }.]
(s) {2n− 5 : n ∈ Z} [Answer: {· · · ,−5,−3,−1, 1, 3, 5, · · · }.]
(t) {n2(−1)n+1 : n ∈ N}] [Answer: {1,−4, 9,−16, 25,−36, 49, · · · }.]
(u) { 1

2n : n ∈ N}] [Answer: { 12 ,
1
4 ,

1
6 ,

1
8 ,

1
10 · · · }.]

(v) {( 1
2 )n : n ∈ N}] [Answer: { 12 ,

1
4 ,

1
8 ,

1
16 ,

1
32 · · · }.]

(w) { 1
2n : n ∈ N}] [Answer: { 12 ,

1
4 ,

1
8 ,

1
16 ,

1
32 · · · }.]

(x) {2−n : n ∈ N}] [Answer: { 12 ,
1
4 ,

1
8 ,

1
16 ,

1
32 · · · }.]

(y) {(−2)−n : n ∈ N}] [Answer: {− 1
2 ,

1
4 ,−

1
8 ,

1
16 ,−

1
32 · · · }.]

(z) { 1
n2 : n ∈ N}] [Answer: { 11 ,

1
4 ,

1
9 ,

1
16 ,

1
25 · · · }.]

3. Translate the following sets described in English sentences into ones using only set builder notation
and mathematical symbols. There are many correct ways to answer each of these questions.

(a) The set of multiples of three. [Answer: {3n : n ∈ Z} or {n ∈ Z : n3 ∈ Z} or {3n+ 3 : n ∈ Z}.]
(b) The set of even numbers.

(c) The set of multiples of six. [Answer: {6n : n ∈ Z} or {n ∈ Z : 6 | n} or {n ∈ Z : (2 | n)∧ (3 | n)}.]
(d) The set of odd numbers. [Answer: {2n + 1 : n ∈ Z} or {2n − 1 : n ∈ Z} or {2n + 3 : n ∈ Z}

or {2n − 3 : n ∈ Z} or {2n + 101 : n ∈ Z} or {n ∈ Z : 2n+1
2 ∈ Z} or {n ∈ Z : 2n−1

2 ∈ Z}
{n ∈ Z : n2 /∈ Z}.]

(e) The set of numbers with a remainder of one when divided by three.



32 CHAPTER 1. FOUNDATIONS

(f) The set of numbers with a remainder of two when divided by four. [Answer: {n ∈ Z : n+2
4 ∈ Z}

or {n ∈ Z : n−24 ∈ Z} or {4n+ 2 : n ∈ Z} or {4n− 2 : n ∈ Z}.]
(g) The set of perfect squares.

(h) The set of positive perfect squares. [Answer: {n2 : n ∈ N} or {n : (∃m ∈ N) n = m2}]
(i) The set of perfect cubes. [Answer: {n3 : n ∈ Z} or {n : (∃m ∈ Z) n = m2}]
(j) The set of positive perfect cubes.

(k) The set of negative perfect cubes. [Answer: {n3 : (n ∈ Z) ∧ (n < 0)} or{−(n3) : n ∈ N} or
{(−n)3 : n ∈ N}]

(l) The set of whole numbers bigger than two.

(m) The set of whole numbers bigger than three. [Answer: {n ∈ Z : n > 3} or {n ∈ Z : n ≥ 4}
or {n ∈ N : n2 > 9} or {n ∈ N : n2 > 10} or {n ∈ N : n2 ≥ 16} or {n ∈ N : 2n ≥ 7} or
{n ∈ Z : 2n ≥ 7}.]

(n) The set of numbers strictly between -2 and 2. [Answer: {n ∈ Z : −2 < n < 2} or {n ∈ Z : −1 ≤
n ≤ 1} or{x ∈ R : x3 = x}.]

(o) The set of positive integers with decimal expansions ending in one. [Answer: {10n + 1 : n ∈
Z ∧ n ≥ 0} or {10n− 9 : n ∈ N}.]

(p) The set of positive integers with decimal expansions ending in zero. [Answer: {10n : n ∈ N}.]
(q) The set of positive integers with decimal expansions ending in five. [Answer: {10n − 5 : n ∈ N}

or {5n : (n ∈ N) ∧ (n2 /∈ Z)} or {n : (n5 ∈ Z) ∧ (n2 /∈ Z)}.]
(r) The set of positive rational numbers expressible with a one in the numerator. [Answer: { 1n : n ∈

N}.]
(s) The set of rational numbers expressible as a fraction with a one in the numerator. [Answer:
{ 1n : n ∈ Z− {0}}.]

4. Translate the following sets in listed form into ones using only set builder notation and mathematical
symbols. There are many correct ways to answer each of these questions.

(a) {7, 14, 21, 28, 35, 42 · · · }
(b) {· · · ,−35,−28,−21,−14,−7, 0, 7, 14, 21, 28, 35 · · · }
(c) {1, 4, 7, 10, 13, 16, 19 · · · } [Answer: {3n− 2 : n ∈ N}.]
(d) {7, 10, 13, 16, 19, 22, 25 · · · } [Answer: {3n+ 4 : n ∈ N}.]
(e) {2, 5, 8, 11, 14, 17 · · · }
(f) {−1, 2, 5, 8, 11, 14, · · · }
(g) {−3,−2,−1, 0, 1, 2, 3, · · · } [Answer: {n− 4 : n ∈ N} or {n ∈ Z : n ≥ −3} or {n ∈ Z : n > −4}.]
(h) {1,−2, 3,−4, 5,−6, · · · } [Answer: {n(−1)n+1 : n ∈ N} or {−n(−1)n : n ∈ N}.]
(i) {−2, 4,−6, 8,−10, 12, · · · }
(j) {−1,−4,−9,−16,−25,−36, · · · } [Answer: {−n2 : n ∈ N}.]
(k) {0, 1, 4, 9, 16, · · · }
(l) {9, 16, 25, 36, 49, · · · }
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(m) {5, 9, 13, 17, 21, · · · }
(n) { 13 ,

1
6 ,

1
9 ,

1
12 ,

1
15 , · · · }

(o) { 13 ,
1
9 ,

1
27 ,

1
81 , · · · }

(p) {− 2
3 ,

4
9 ,

8
27 ,−

16
81 , · · · } [Answer: {(− 2

3 )n : n ∈ N}.]
(q) {2, 1, 23 ,

1
2 ,

2
5 ,

1
3 ,

2
7 ,

1
8 , · · · } [Answer: { 2n : n ∈ N.]

(r) {9, 99, 999, 9999, 99999, · · · } [Answer: {10n − 1 : n ∈ N}.]
(s) {11, 101, 1001, 10001, · · · } [Answer: {10n + 1 : n ∈ N}.]
(t) {101, 10001, 100001, 1000001, · · · } [Answer: {100n + 1 : n ∈ N}.]
(u) {101, 1001, 10001, 100001, · · · } [Answer: {10n + 1 : (n ∈ N) ∧ (n ≥ 2)} or {10n+1 + 1 : n ∈ N} or
{10 · 10n + 1 : n ∈ N}.]
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Chapter 2

Basic Proof Techniques

2.1 Parity Proofs

Prove each of the following statements for the integers a, b and c. You may assume that the integers are
closed under addition and multiplication, that any integer is even or odd, and that one is not an even integer.

1. If a is even then 3a is even.

Proof: Suppose that a is an even number. We know then that a = 2s for some s in Z. We can see that
3a = 3 · 2s = 2 · 3s. Set t to be the integer 3s. Then 3a = 2t for t ∈ Z and by definition we get that 3a
is even.

2. If a is odd then 5a is odd.

Proof: Let a be an odd number. By definition, a = 2s + 1 for some s in the integers. Then 5a =
5(2s+ 1) = 10s+ 5 = 10s+ 4 + 1 = 2(5s+ 2) + 1. Let t be the integer 5s+ 2. Now 5a = 2t+ 1 and by
definition 5a is odd.

3. If a is even then −a is even.

4. If a is even then 3a is even.

5. If a is odd then −a is odd.

Proof: Suppose a is an odd number. Thus a must equal 2k+1 for some integer k. then −a = −(2k+1) =
−2k− 1. We can “add zero” to get −a = −2k− 1 + (−1 + 1) = (−2k− 2) + 1 = 2(−k− 1) + 1. Setting
m = −k − 1 which is an integer, gives −a = 2m+ 1 for m ∈ Z, which proves that −a is odd.

6. If a is even then a− 1 is odd.

Proof: Assume a is even so a = 2r for r ∈ Z. Then a − 1 = 2r − 1 = 2r − 2 + 1 = 2(r − 1) + 1. Set
s = r − 1 which is an integer to see that a− 1 = 2s+ 1 and therefore is odd.

7. If a is odd then a− 4 is odd.

35
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8. If a+ 5 is even then a is odd.

Proof: Assume that a+ 5 is even, thus we know a+ 5 = 2s for s ∈ Z. Then a = 2s− 5 = 2s− 6 + 1 =
2(s− 3) + 1. Set t = s− 3 which is in Z. We then get a = 2t+ 1 which shows that a is odd.

Alternate Proof: We can take the contrapositive and instead show that if a is even then a+ 5 is odd.
Assume a = 2s for s ∈ Z. Then a + 5 = 2s + 5 = 2s + 4 + 1 = 2(s + 2) + 1. Set t = s + 2. Then
a+ 5 = 2t+ 1, and as t is an integer, this shows a+ 5 is odd.

9. If a is odd then a+ 5 is even.

10. If a is even then a2 is even.

11. If a is odd then a3 is odd.

Proof: Suppose a is odd so a = 2k + 1 for k ∈ Z. Thus a3 = (2k + 1)3 = 8k3 + 12k2 + 6k + 1 =
2(4k3 + 6k2 + 3k) + 1. Set m = 4k3 + 6k2 + 3k ∈ Z. Now a3 = 2m+ 1 and therefore is odd.

12. If a2 is odd then a is odd.

13. If a2 is even then a is even.

14. If a3 is odd then a is odd.

Proof: We take the contrapositive and instead show that if a is even then so is a3. Assume a = 2k.
Then a3 = 8k3 = 2(4k3). Set l = 4k3 ∈ Z to get a3 = 2l and show it is even.

15. If a5 + 8 is odd then a is odd.

16. If a3 − 3a2 + a is even then a is even.

Proof: We instead show the contrapositive of the original statement. Assume that a is odd and thus
a = 2r + 1 for some r ∈ Z. Then a3 − 3a2 + a = (2r + 1)3 − 3(2r + 1)2 + 2r + 1 = (2r + 1)(4r2 +
4r + 1)− 3(4r2 + 4r + 1) + 2r + 1 = (8r3 + 12r2 + 3r + 1)− 12r2 − 12r − 3 + 2r + 1 = 8r3 − 4r − 1 =
8r3 − 4r− 2 + 1 = 2(4r3 − 2r− 1) + 1. Set s = 4r3 − 2r− 1 to see that a3 − 3a2 + a = 2s+ 1. Because
s is an integer, this shows a3 − 3a2 + a is odd.

17. If a and b are even then their sum is even.

18. If a and b are even then the product ab is even.

Proof: Assume that a and b are both even. Thus a = 2r and b = 2s for some r and s in the integers.
Then ab = 2r · 2s = 2 · (2rs). Set t to be the integer 2rs. Then ab = 2t for t ∈ Z thus showing ab is
even.

19. If a and b are odd then their sum is even.

20. If a and b are odd then their difference is even.

21. If a and b are odd then their product is odd.

22. If a is even and b is odd then the product ab is even.

Proof: Assume that a = 2k and b = 2l + 1 for k, l ∈ Z. then ab = (2k)(2l + 1) = 2(2lk + k). Let
m = 2lk + k. Then ab = 2m and as m ∈ Z this shows ab is even.
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23. If a is even and b is odd then the sum a+ b is odd.

24. If b− a is odd then b+ a is odd.

Proof: Suppose b − a is odd, then b − a = 2r + 1 for some r. Then as b = 2r + a + 1 we know that
b + a = (2r + a + 1) + a = 2r + 2a + 1 = 2(r + a) + 1. Set s to be the integer r + a. We now have
b+ a = 2s+ 1 which shows it to be odd.

25. If b− a is even then b+ a is even.

26. If b+ 2a is even then ba is even.

27. If b+ 2a is even then b3a is even.

Proof: Suppose b+ 2a is even. Then b+ 2a = 2r for some integer r. This means b = 2a− 2r = 2(a− r)
and therefore b3a = (2(a− r))3a = 8(a− r)3a = 2(4(a− r)3a). We set s to be the integer (4(a− r)3a)
to get b3a = 2s, thus showing it is even.

28. If 4b− a is odd then a2 − 16b2 is odd.

Proof: Suppose 4b − a is odd. Then 4b − a = 2k + 1 for some integer k. Thus a = 4b − 2k − 1
which implies a2 − 16b2 = (4b− 2k − 1)(4b− 2k − 1)− 4b = 16b2 − 16bk − 8b+ 4k2 + 4k + 1− 16b2 =
−16bk−8b+4k2+4k+1 = 2(−8bk−4b−2k2−2k)+1. If we set m to be the integer −8bk−4b−2k2−2k
we see that a2 − 16b2 = 2m+ 1 and therefore is odd.

29. If a is even or b is even then their product is even.

Proof: We have two different cases, but since ab is equal ba we can, without loss of generality, make
the assumption that a is even. Assume a = 2k for k ∈ Z. Then ab = 2kb. Letting l = kb ∈ Z we get
that the product is 2l, which shows it is even.

30. If a+ 1 is odd or b− 1 is odd then their product is even.

Proof: We have two different cases, and here we can’t just switch which is which, since we know different
facts about a and b. Therefore we need to split this into separate cases.

Case 1: Assume a+ 1 is odd. Here a+ 1 = 2r+ 1 for r ∈ Z and thus a = 2r. Then ab = 2(rb). Set s to
be the integer rb to get that ab = 2s and see that this product is odd.

Case 2: Assume that b− 1 is odd. Thus b− 1 = 2t+ 11 for t ∈ Z. Then b = 2t+ 2 = 2(t+ 1) and thus
ab = 2a(t + 1). Setting u = a(t + 1) we get that ab = 2u. Since u is an integer, this shows that ab is
even.

31. If ab is odd then a and b are odd.

32. For any a, 4a is even.

Proof: Whatever a is we can set k = 2a ∈ Z to write 4a = 2k ∈ Z which shows it is even.2

1Since each case is a separate proof, we don’t really need to use new letters here. We could have reused r and s at this point
if we really wanted to.

2We could have also broken this down into two cases for a odd, and a even.
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33. For any integer a, a2 + a is always even.

Proof: We can’t pull out a two this time so we proceed by cases with the two possibilities that a is
either even or odd.

Case 1: a is even. Assume a = 2k for some integer k. Then a2+a = (2k)2+2k = 4k2+2k = 2(2k2+k).
Setting l = 2k2 + k ∈ Z gives us that a2 + a = 2l and thus is even.

Case 2: a is odd. Assume a = 2k + 1 for an integer value of k. Here a2 + a = (2k + 1)2 + 2k + 1 =
4k2 + 4k+ 1 + 2k+ 1 = 4k2 + 6k+ 2 = 2(2k2 + 3k+ 1). By letting l be the integer 2k2 + 3k+ 1 we get
that a2 + a = 2l showing it to be even.

34. For any integer a, a2 − a− 1 is always odd.

35. For any integer a, a3 + a2 is always even.

36. For any integer a, a(a+ 1) is even.

37. If a is odd then a2−1
4 is an even integer. [Hint: Use the last result.]

Proof: Assume a is odd. Then a = 2k + 1 and a2−1
4 = (2k+1)2−1

4 = 4k2+4k+1−1
4 = 4k2+4k

4 = k2 + k =
k(k + 1). By our last result this is even, completing our proof.

38. For any integer a, a2 − a− 6 is even.

Proof: We split this into cases.

Case 1: a is odd. Here n = 2k + 1 for k ∈ Z. Thus a2 − a − 6 = (2k + 1)2 − (2k + 1) − 6 =
4k2 + 4k + 1 − 2k − 1 − 6 = 4k2 + 2k − 6 = 2(2k2 + k − 3). Setting m = 2k2 + k − 3 ∈ Z shows that
a2 − a− 6 = 2m and thus is even.

Case 2: a is even. Here a = 2k for k ∈ Z. Thus a2−a−6 = (2k)2−(2k)−6 = 4k2−2k−6 = 2(2k2−k−3).
Setting m = 2k2 − k − 3 ∈ Z shows that a2 − a− 6 = 2m and thus is even.

39. If a or b is even then ab− 3 is odd.

40. If a or b is odd then ab+ b+ a is odd.

Proof: Without loss of generality, assume a is odd. Then a = 2k+ 1 for some k ∈ Z. Thus ab+ b+ a =
(2k+ 1)b+ b+ (2k+ 1) = 2kb+ 2b+ 2k+ 1 = 2(kb+ b+ k) + 1. Set l = kb+ b+ k which is in Z. Then
ab+ b+ a = 2l + 1, completing our proof.

41. If a or b is even then ab+ 2b+ 1 is odd.

Note: Here a and b do not play the same role in the expression we are looking at, so we can’t do both
cases at once.

Proof:

Case 1: a is even. Here a = 2r for some r ∈ Z. Thus ab + 2b + 1 = 2rb + 2b + 1 = 2(rb + b) + 1. By
setting s = rb+ b ∈ Z we have ab+ 2b+ 1 = 2s+ 1 and thus see it is odd.

Case 2: b is even. Here b = 2r for some r ∈ Z. Thus ab+ 2b+ 1 = 2ar + 4r + 1 = 2(ar + 2r) + 1. We
can then set s equal to ar+ 2r which is an integer to write ab+ 2b+ 1 as 2s+ 1 showing it is odd.

42. If a or b is even then (ab)2 is even.
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43. If a is even then either ab− b or ab− b− a− 1 is odd.

Proof: We suppose that a is even and ab−b is not odd and then will show that ab−b−a−1 is odd. We
know a = 2r and ab−b = 2s for r, s ∈ Z. Then ab−b−a−1 = 2s−2r−1 = 2s−2r−2+1 = 2(s−r−1)+1.
Setting t = s− r − 1 ∈ Z we see ab− b− a− 1 is odd.

44. If ab is even then a or b is even.

45. If a+ b is odd then a or b is odd.

46. If a is odd and b is any integer, then either ab or ab+ a is odd.

47. If a is even and b is any integer, then either ab+ b or ab+ a+ b+ 1 is odd.

Proof: Assume that a is even and that ab + b is not odd and we will show ab + a + b + 1 is odd. We
can assume that a = 2k and that ab + b = 2m for some integers k and m. Then ab + a + b + 1 =
(ab+b)+a+1 = 2m+2k+1 = 2(m+k)+1. If we set n to be the integer m+k we get ab+a+b+1 = 2n+1
which shows it is odd.

48. If a is odd and b is any integer, then either ab or ab+ b is odd.

49. If a+ b is even then a and b have the same parity.

Proof: We show the contrapositive statement: If a and b have different parity then a + b is odd. We
therefore know one of a and b is even and the other is odd. As a and b are interchangeable in the
expression a+ b we can assume without loss of generality that a is even and b is odd. We know a = 2k
for some integer k and b = 2m + 1 for some integer m. Then a + b = 2k + 2m + 1 = 2(k + m) + 1.
Setting t to be the integer k +m gives us a+ b = 2t+ 1 which shows it to be odd.

50. If b− a2 is even then a and b have the same parity.

Proof: We prove the contrapositive statement: If a and b have different parity then b− a2 is odd. As
a and b are not interchangeable int he expression b− a2, we must split this up into cases.

Case 1: a is odd, b is even. Here a = 2r+1 and b = 2s for some r, s ∈ Z. Then b−a2 = 2s− (2r+1)2 =
2s − (4r2 + 4r + 1) = 2s − 4r2 − 4r − 1 = 2s − 4r2 − 4r − 1 − 1 + 1 = 2(s − 2r2 − 2r − 1) + 1. Set
t = s− 2r2 − 2r − 1 ∈ Z to get b− 2a2 = 2t+ 1 which shows that it is odd.

Case 2: b is odd, a is even. Here b = 2r+1 and a = 2s for some r, s ∈ Z. Then b−a2 = 2r+1− (2s)2 =
2r + 1− 4s2 = 2(r − 2s2) + 1. We can set t to be the integer r − 2s2 to get b− a2 = 2t+ 1, showing it
to be odd.

51. If a+ b is odd then a and b have different parity.

52. If b− a2 is odd then a and b have different parity.

53. If a and b have the same parity then a+ b is even.

Proof: If a and b have the same parity then they are either both odd or both even. We get the following
cases.

Case 1: a and b are odd. Here a = 2k + 1 and b = 2m + 1 for some integers k and m. Then
a+ b = 2k+ 1 + 2m+ 1 = 2k+ 2m+ 2 = 2(k+m+ 1). Set n = k+m+ 1 to get a+ b = 2n. Since n is
an integer, this shows a+ b to be even.

Case 2: a and b are even. Here a = 2k and b = 2m for some integers k and m. Then a+ b = 2k+ 2m =
2k+2m = 2(k+m). Set n = k+m to get a+b = 2n. Since n is an integer, we see that a+b is even.
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54. If a and b have the same parity then b− a2 is even.

55. If a and b have different parity then a+ b is odd.

Proof: Suppose a and b have different parity and we will show that a+ b is odd. We know one of a and
b is even and the other is odd. As a and b are interchangeable in the expression a + b we can assume
a is even and b is odd without loss of generality. Thus a = 2r and b = 2s + 1 for some integers r and
s. Now a+ b = 2r + 2s+ 1 = 2(r + s) + 1. Setting t to be the integer r + s we get that a+ b = 2t+ 1
which shows it to be an odd number.

56. If a and b have different parity then b− a2 is odd.

57. If a and b have different parity then ab is even.

58. If abc is even then a or b or c is even.

59. If abc is odd then a and b and c is odd.

Proof: We prove the contrapositive statement: If a or b or c is even then abc is even. As a, b and c are
interchangeable in the expression abc, we can assume that a is even without loss of generality. Then
a = 2r for some integer r which means abc = 2rbc. Setting s to be the integer rbc gives us abc = 2s
thus showing abc is even.

60. If a+ b+ c is odd then a or b or c is odd.

61. If a+ b+ c is odd then a+ b or b+ c or a+ c is even.

Proof: We prove the contrapositive statement: If a + b and b + c and a + c are odd then a + b + c is
even. Assume a+ b and b+ c and a+ c are odd, thus we can write a+ b = 2r + 1, b+ c = 2s+ 1 and
a+ c = 2t+ 1 for some r, s and t in the integers. Then a+ b+ c = 2r + 1 + c =

62. Prove that if a+ b and b+ c are odd then a+ c is even.

Proof: Assume that a + b and b + c are odd. Then a + b = 2r + 1 and b + c = 2s + 1 for some r and
s in the integers. Then a + c = 2r + 1 − b + 2s + 1 − b = 2r + 2 − 2s − 2b = 2(r + 1 − s − b). Set
t = r + 1− s− b, which is an integer, to get a+ c = 2t. This shows a+ c is even.

63. If a+ b+ c is even then a or b or c is even.

Proof: We prove the contrapositive statement: If a and b and c are odd then a+ b+ c is odd. Assume
that a = 2r+1, b = 2s+1 and c = 2t+1 for integers r, s and t. Then a+b+c = 2r+1+2s+1+2t+1 =
2r+2s+2t+2+1 = 2(r+s+t+1)+1. We can set u to be the integer r+s+t+1 to get a+b+c = 2u+1,
which shows it to be odd.

64. If a+ b+ c is even then a− b+ c is even.

65. If a+ b+ c is even then a− b− c is even and a+ b− c is even.

Proof: Suppose a + b + c = 2k. We have two statements we need to show. First a = 2k − b − c so
a−b−c = 2k−b−c−b−c = 2k−2b−2c = 2(k−b−c). Setting m = k−b−c ∈ Z shows a−b−c = 2m
and thus is even. Next a + b − c = 2k − b − c + b − c = 2k − 2c = 2(k − c). Setting n = k − c shows
a+ b− c = 2n which proves a+ b− c is even as n is an integer.3

3In this argument, we could have instead used the fact that a − b − c = a + b + c − 2b − 2c and a + b − c = a + b + c − 2c
which would have saved us a couple of steps.
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66. No integer can be both odd and even.

Proof: We suppose such an integer does exist, and will reach a contradiction.4 Suppose a is both even
and odd. Then a = 2k and a = 2m+1 for integers k andm. Then 2k = 2m+1 so 1 = 2k−2m = 2(k−m).
As k −m is an integer, this shows that one is an even number, which is a contradiction.

67. For any integer a, a and a+ 1 have different parity.

68. For any integer a, a and −a have the same parity.

69. For any integer a, a and a2 have the same parity.

70. For any integer a, a and 7a have the same parity.

Proof: Any integer a is either odd or even, thus we can break things down into two cases.

Case 1: a is even. Here a = 2k for some integer k. Then 7a = 7(2k) = 2(7k). Setting l = 7k ∈ Z shows
that 7k is even. We now know both a and 7a are even, thus they have the same parity.

Case 2: a is odd. Here a = 2k + 1 for k ∈ Z. Then 7a = 7(2k + 1) = 14k + 7 = 14k + 7 − 1 + 1 =
14k + 6 + 1 = 2(7k + 3) + 1. Set l to be the integer 7k + 3 to show that 7k = 2l + 1. This shows that
7a is odd and therefore both a and 7a have the same parity.

Alternate Proof: Suppose that a and 7a have different parity and we will reach a contradiction.

Case 1: a is even and 7a is odd. Here a = 2r and 7a = 2s+ 1 for integers r and s. Then 2r = 2s+ 1
so 2(r − s) = 1. As r − s is an integer, this implies 1 is even, which is a contradiction.

Case 2: a is odd and 7a is even. Here a = 2r + 1 and 7a = 2s for integers r and s. Then 2r + 1 = 2s
so 2(s− r) = 1 which implies 1 is even because s− r is an integer. This is a contradiction.

Disprove the following statements.

1. “If 6a is even then a is even.”

Answer: The statement is equivalent to “(∀a)(6a even) ⇒ (a even).” We wish to show the negation
is true. That statement is equivalent to “∼ (∀a)(6a even) ⇒ (a even)” or “∼ (∀a) ∼ (6a even) ∨(a
even)” or “(∃a) ∼∼ (6a even) ∧ ∼ (a even)” or “(∃a)(6a even) ∧(a odd).”

Thus, we only need to show one example where a is odd and 6a is even. We choose a = 1 (or any other
odd) and we have accomplished that.

Though it’s useful to use our rules for quantifiers to be sure we understand what is being stated, we
can also try to figure things out without writing things in terms of quantifiers. If the original statement
says that something is true for every a, then in order to show it is incorrect we need to find one a for
which it isn’t true.

2. “If a is odd then a2 + a is odd.”

3. “If a is even then a
2 is even.”

4. “If a is even then a2

4 is even.”

Answer: If a = 2 then then a2

4 is one, which is not even.

4This is the only proof on this sheet that requires a proof by contradiction.
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5. “If a is even then (a+2)2

4 is even.”

6. “If ab is even then a and b is even.”

7. “If a+ b is odd then a is odd.”

Answer: If a = 2 and b = 1 then a+ b = 3 which is odd, yet a is not odd.

8. “If a+ b is even then a and b are both even.”

9. “If a+ b is even then a and b are both odd.”

Answer: If a = 2 and b = 2 then a+ b is even but a and b are not odd.

10. “If a2 + a is even then a is even.”

Answer: If a = 1 then a2 + a is even but a is not even.

11. “If a2 + a is even then a is odd.”

12. “If a2 + b2 is even then a and b are even.”

13. “If the average of a and b is even then a or b is even.”

Answer: If a = 1 and b = 3 then the average is 2 which is even, yet neither one of a or b is even.

14. “If the average of a and b is odd then a or b is odd.”

Answer: If a = 2 and b = 4 then the average is 3 which is odd, yet neither one of a or b is odd.

15. “If the average of a and b is even then a or b is odd.”

16. “If the average of a and b is odd then a or b is even.”

17. “If a and b are integers then (a+ 1)b or (a+ 1)(b+ 1) is odd.”

Answer: If a = 1 and b = 1 then (a+ 1)b = 2 and (a+ 1)(b+ 1) = 4. Neither of these is odd.
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2.2 Divisibility Proofs

Assume that a, b, c and d are integers and prove the following statements.

1. Every nonzero integer divides itself.

2. Every nonzero integer divides its negative.

Proof: Let a be a nonzero number. We want to find an r ∈ Z so that ar = −a. Setting r to be the
integer −1 completes the proof.

3. Every nonzero integer divides its square.

Proof: Let a be any nonzero integer. We want to find an r ∈ Z so that ar = a2. Simply set r = a ∈ Z
to complete the proof.

4. Every nonzero integer divides zero.

5. One divides every integer.

6. Negative one divides every integer.

Proof: Let a be an integer. We wish to find an intger k so that (−1)k = a. Set k to be the integer −a
and we are done.

7. An integer a divides a2 + a.

8. If a is even then four divides 2a.

9. If a is odd then four divides (a+ 1)2.

Proof: Suppose a is odd. This means a = 2r + 1 for some integer r. Then (a + 1)2 = (2r + 2)2 =
(2(r+ 1))2 = 22(r+ 1)2 = 4(r+ 1)2. Set s = (r+ 1)2 to get 4s = (a+ 1)2. As s is an integer, this shows
four divides (a+ 1)2.

10. If a is odd then four divides (a− 1)2.

11. If a is even then ten divides 5a.

12. If a is even then ten divides 15a.

Proof: Suppose a is even and thus a = 2r for some r in Z. Then 15a = 15(2r) = 30r = 10(3r). Set s
to be the integer 3r. This shows that 15a = 10s thus proving ten divides 15a.

13. If a is odd then eight does not divide a.

14. If a is odd then 2101 does not divide a.

Proof: We show the contrapositive: If 2101 divides a then a is even. Suppose 2101 divides a . Then
2101r = a. Then 2(2100r) = a. Set s = 2100r to get 2s = a. As s is an integer this proves a is even.
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15. If a is odd then four divides a− 1 or a+ 1.

Proof: Let a be odd. Then a = 2k + 1 for some k in the integers. We need to consider two cases.

Case 1: (k is even)

Here k = 2l for some l in the integers. Then a− 1 = 2k+ 1− 1 = 2k = 2(2l) = 4l. Then a− 1 = 4l and
as l is an integer, this shows a− 1 is divisible by four.

Case 2: (k is odd)

Here k = 2m+1 for some integer m. Then a+1 = 2k+1+1 = 2k+2 = 2(2m+1)+2 = 4m+4 = 4(m+1).
Set n to be the integer m+ 1. Then a+ 1 = 4n which shows a+ 1 is divisible by four.

16. If a is odd then either a+ 1 or a+ 3 is divisible by four.

17. If a is odd then either a+ 3 or a− 3 is divisible by four.

Proof: Suppose a is odd, so a = 2r + 1 for r ∈ Z.

Case 1: r is even. Here r = 2s for s ∈ Z. Thus a = 2(2s) + 1 = 4s + 1. Here a + 3 = 4s + 1 + 3 =
4s+ 4 = 4(s+ 1). Setting t = s+ 1 shows that 4t = a+ 3 and thus we have shown a+ 3 is divisible by
4.

Case 2: r is odd. Here r = 2s+1 for s ∈ Z. Thus a = 2(2s+1)+1 = 4s+3. Here a−3 = 4s+3−3 = 4s.
Setting t = s shows that 4t = a− 3 and thus we have shown a− 3 is divisible by 4.

18. If a is odd then a2 − 1 is divisible by eight.

19. If a2 − 1 is not divisible by four then a is even.

20. If a+ 1 or a+ 2 is divisible by three then a2 − 1 is divisible by three.

21. If three does not divide a2 + 2 then three does not divide a− 1 and three does not divide a− 2.

Proof: We prove the contrapositive statement: If three divides a− 1 or a− 2 then three divides a2 + 2.
If three divides a − 1 then a − 1 = 3k for k ∈ Z. If three divides a − 2 then a − 2 = 3k for k ∈ Z. We
thus split things into cases as either a = 3k + 1 or a = 3k + 2 for k ∈ Z.
Case 1: a = 3k + 1. Here a2 + 2 = (3k + 1)2 + 2 = 9k2 + 6k + 1 + 2 = 9k2 + 6k + 3 = 3(3k2 + 2k + 1).
Setting m = 3k2 + 2k + 1 ∈ Z we see that a2 + 2 = 3m. This means that three divides a2 + 2.

Case 2: a = 3k+2. Note that a2+2 = (3k+2)2+2 = 9k2+12k+4+2 = 9k2+12k+6 = 3(3k2+4k+2).
Set m = 3k2 + 4k + 2 ∈ Z to see a2 + 2 = 3m and conclude that three divides a2 + 2.

22. If a divides b then a divides b+ a.

23. If a2 divides b then a divides b.

Proof: Assume that a2 divides b. Thus a2k = b for some integer k. Then a(ak) = b. Set l to be the
integer ak. Then we have al = b and thus a divides b.

24. If a4 divides b then a3 divides b.

25. If ab divides b2 then a divides b.
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26. If a divides b3 then a divides b4.

Proof: Assume that a divides b3. Thus ak = b3 for some integer k. Then b4 = b3b = akb. Set l to be
the integer kb. Then we have b4 = al showing a divides b4.

27. If a divides b and b divides a then a = b or a = −b.
Proof: Suppose that a|b and b|a. This means that ar = b and bs = a for some r, s ∈ Z and the
definition of divides implies that a 6= 0. Plugging one equation into the other gives us ars = a which
means ars − a = 0 and a(rs − 1) = 0. Since a 6= 0 we know that rs − 1 = 0 or that rs = 1. Since r
and s are integers, this means they must both be 1 or both be −1. If they are both 1 then a = b and if
they are both −1 then a = −b. Either way, we are done.

28. If a divides b and a does not divide b+ c then a does not divide c.

Proof: We will prove the contrapositive, that if a divides c then a doesn’t divide b or a divides b + c.
Recall P ⇒ (Q ∨ R) ≡ P∧ ∼ Q ⇒ R so this is equivalent to showing that if a divides c and a divides
b then a divides b + c. This is proved earlier in these exercises, so the rest of the proof can be found
above.

29. If a divides b and a does not divide b− c then a does not divide c.

30. If a+ 1 and b+ 1 are divisible by three then ab+ 2 is also divisible by three.

31. If a+ 1 is divisible by three and b+ 2 is divisible by three then ab+ 1 is divisible by three.

32. If a− 2 and b− 2 are divisible by three then ab− 1 is also divisible by three.

33. If a− 3 and b− 3 are divisible by four then ab− 1 is also divisible by four.

34. If a+ 1 and b+ 1 are divisible by n then ab− 1 is also divisible by n.

Proof: Assume that a+1 and b+1 are divisible by n which means nr = (a+1) and ns = (b+1) for some
r, s ∈ Z. Since a = nr−1 and b = ns−1 we know ab−1 = (nr−1)(ns−1)−1 = n2rs−nr−ns+1−1 =
n(nrs−r−s). Set t = (nrs−r−s) ∈ Z to see that nt = ab−1 and therefore show n divides ab−1.

35. If a is divisible by three or b is divisible by 36 then ab is divisible by three.

Proof: We proceed by cases5.

Case 1: 3|a. Here a = 3k for k ∈ Z and thus ab = 3kb. Set l = kb ∈ Z to see ab = 3l thus showing ab is
divisible by 3.

Case 2: 36|b. Here b = 36k for k ∈ Z and thus ab = 36ak = 3(12ak). Set l = 12ak ∈ Z to see ab = 3l
thus showing ab is divisible by 3.

36. If a− 2 and b− 5 are divisible by three then ab+ 2 is also divisible by three.

Proof: Suppose that 3|a−2 and 3|b−5. Then 3r = a−2 and 3s = b−5 for some r and s in Z. This means
a = 3r+2 and b = 3s+5. Now ab+2 = (3r+2)(3s+5)+2 = 9rs+6s+15r+12 = 3(3rs+2s+5r+4).
Set t = 3rs+ 2s+ 5r + 4 ∈ Z to get ab+ 2 = 3t and see that ab+ 2 is divisible by 3.

37. If three divides a and four divides b then twelve divides ab.

5We cannot state “without loss of generality” here since a and b in our or statement have distinctly different properties.
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38. If three divides a and six divides b then three divides a+ b.

39. If a and b are odd then a2 + b2 + 2 is divisible by four.

40. If a and b are odd then ab+ a+ b+ 1 is divisible by four.

Proof: Assume that a and b are odd, so a = 2r+1 and b = 2s+1 for some r, s ∈ Z. Now ab+a+b+1 =
(2r+ 1)(2s+ 1) + (2r+ 1) + (2s+ 1) + 1 = 4rs+ 4r+ 4s+ 4 = 4(rs+ r+ s+ 1). Set t to be the integer
rs+ r + s+ 1 to get 4t = ab+ a+ b+ 1 and see that 4 divides ab+ a+ b+ 1.

41. If a and b are odd then a2 − 1 and b2 − 1 are both divisible by four.

42. If a and b are odd then (a2 − 1)(b2 − 1) is divisible by sixteen.

43. If a and b are different parities then (a2 − 1)(b2 − 1) is divisible by four.

Proof: Without loss of generality assume that a is even and b is odd. Then a = 2r and b = 2s+1 for some
r, s ∈ Z. Now (a2−1)(b2−1) = ((2r)2−1)((2s+1)2−1) = (4r2−1)(4s2+4s+1−1) = 4(4r2−1)(s2+s).
Setting t to be the integer (4r2 − 1)(s2 + s) shows that 4t = (a2 − 1)(b2 − 1) and thus 4 must divide
(a2 − 1)(b2 − 1).

44. If a divides b then a divides b− ca.

Proof: If a divides b we know ar = b for some integer r. Then b− ca = ar − ca = a(r − c). We can set
s = r − c, which is an integer, to see that as = b− ca thus proving a divides b− ca.

45. If a divides b and c then a divides b+ c.

Proof: Suppose that a divides b and c. This means ar = b and as = c for some r, s ∈ Z. Then
b+ c = ar + as = a(r + s). Set t = r + s ∈ Z to see that at = b+ c and show a divides b+ c.

46. If a divides b and c then a divides bc.

47. If a divides b or c then a divides bc.

Proof: Without loss of generality6, suppose a divides b. Then ar = b for some r ∈ Z. Thus bc = arc
and setting s = rc ∈ Z implies that a divides bc.

48. If a divides b+ c and a divides c then a divides b.

49. If a divides b and c then a divides a+ b+ c.

50. If a divides b and c then a divides (b+ c)2.

51. If a divides b+ c and b− c then a divides c2 − b2.

52. If a divides b then ac divides bc.

53. If a divides b and b divides c then a divides c.

Proof: Suppose that a|b and b|c. This means ar = b and bs = c for some r, s ∈ Z. We must show that
a|c or that at = c for some t ∈ Z. As c = bs = ars, if we set t = rs, which is in Z, then we see that
at = c completing the proof.

6We could also easily break this down into the two cases of a|b and a|c but as the equation is symmetric in b and c this
allowed us to use this shortcut.
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54. If ab divides c then a divides c and b divides c.

55. If ab divides bc then a divides c.

56. If a divides b and c then a2 divides bc.

57. If a and b divide c then ab divides c2.

Proof: Assume that a and b divide c, which means ar = c and bs = c for some r, s ∈ Z. Then
c2 = arbs = ab(rs). Setting t = rs ∈ Z shows that ab|c2.

58. If a does not divide bc then a does not divide b.

59. If a does not divide bc then a does not divide b and a does not divide c.

60. If a divides b− c and c− d, then a divides b− d.
Proof: Suppose a divides b − c and c − d. Thus ar = b − c and as = c − d for some integers r and s.
Then b − d = b − c + c − d = ar + as = a(r + s). Let t be the integer r + s. Then b − d = at which
shows a divides b− d.7

61. If a divides b+ c and c+ d, then a divides b− d.

62. If ab, bc and ac all divide d then (abc)2 divides d3.

Proof: Assume that ab, bc and ac divide d, which implies abr = bcs = act = d for some r, s, and t in
Z. Then d3 = (abr)(bcs)(act) = a2b2c2rst = (abc)2rst. Let u = rst ∈ Z. As d3 = (abc)2u we see that
(abc)2 divides d3.

Assume that a, b, c and d are integers and disprove the following statements.

1. If a divides bc then a divides b and a divides c.

Answer: If a = 4, b = 8 and c = 2 then a divides bc but a does not divide both b and c.

2. If a divides bc then a divides b or a divides c.

3. If a divides b+ c then a divides b and a divides c.

4. If a divides b+ c then a divides b or a divides c.

5. If a divides b− c then a divides b and a divides c.

6. If a divides b− c then a divides b or a divides c.

Answer: If a = 2, b = 5, c = 1 then a divides b− c but a does not divide b or c.

7. If a divides b and b divides a then a = b.

Answer: If a = 2 and b = −2 then a divides b and b divides a but the two are not equal.

8. If 3 does not divide a then three divides a− 1.

Answer: If a = 2 then three does not divide a or a− 1.

7Here we add zero by adding −c + c. We could also prove this by solving for both b and d in the two equations given. That
method takes only a slight bit more work, but may require less thought.
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9. If 3 does not divide a then three divides a− 2.

10. If four divides a then eight divides a.

11. If six divides a and 15 divides a then 6× 15 divides a.

Answer: If a = 30 then six divides a and fifteen divides a but 6× 15 = 90 does not.

12. If a+ b and b+ c divide d, then a+ c divides d.

Answer: When a = 2, b = 1, b = 2 and d = 6 then a + b and b + c both divide d, but a + c does not
divide d.

13. If a is odd then a does not divide 2101.

14. If ab divides cd then a divides c and b divides d.

15. If ab divides cd then a divides c or d.

16. If a divides b and c divides d then a+ b divides c+ d.

Answer: If a = 2, b = 4, c = 3, and d = 6 then a divides b and c divides d, but a+ b = 6 does not divide
c+ d = 9.

17. If a divides b and c divides d then a− b divides c− d.
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2.3 Modular Arithmetic Proofs

Prove the following statements. Assume that a, b, c, d, and n are all integers and that n ≥ 2

1. 0 ≡ n (mod n).

2. −n ≡ n (mod n).

Proof: We must show n divides n − −n. That is, we must find a k so nk = n + n. Set k to be the
integer two. This completes the proof.

3. a ≡ a (mod n).

4. a ≡ n+ a (mod n).

5. a ≡ bn+ a (mod n).

Proof: We must show n divides bn + a − a. This means that we must find a k so nk = bn. Setting k
to be the integer b completes the proof. .

6. If a ≡ b (mod n) then b ≡ a (mod n).

Proof: Assume a ≡ b (mod n). Thus n divides b − a and nr equals b − a for some r ∈ Z. Now
a− b = −(b− a) = −nr = n(−r). If we set s = −r which is also an integer, then we see that n divides
a− b and thus b ≡ a (mod n).

7. If a ≡ b (mod n) and b ≡ c (mod n) then a ≡ c (mod n.)

Proof: Assume that n|b − a and n|c − b so there are r, s ∈ Z so nr = b − a and ns = c − b. Then
c− a = c− b+ b− a = ns+nr = n(s+ r). Set t = s+ r ∈ Z. to see n|c− a and thus a ≡ c (mod n.)

8. If a ≡ b (mod n) then a+ c ≡ b+ c (mod n).

9. If a ≡ b (mod n) then a− c ≡ b− c (mod n).

10. If a ≡ b (mod n) then ac ≡ bc (mod n).

11. If a ≡ b (mod n) and c ≡ d (mod n) then a+ c ≡ b+ d (mod n.)

Proof: Assume that n|b − a and n|d − c so there are r, s ∈ Z so nr = b − a and ns = d − c. Then
b+d−(a+c) = b+d−a−c = b−a+d−c = nr+ns = n(r+s). Set t = r+s ∈ Z. to see n|b+d−(a+c)
and thus a+ c ≡ b+ d (mod n.)

12. If a ≡ b (mod n) and c ≡ d (mod n) then a− c ≡ b− d (mod n.)

Proof: Assume a ≡ b (mod n) and c ≡ d (mod n), thus n divides both b − a and d − c. This means
nr = b− a and ns = d− c for some r, s ∈ Z. Then b− d− (a− c) = b− a− d+ c = b− a− (d− c) =
nr−ns = n(r−s). Set t = r−s ∈ Z to see b−d−(a−c) = nt, thus showing that n divides b−d−(a−c)
and a− c ≡ b− d (mod n.)

13. If a ≡ b (mod n) and c ≡ d (mod n) then ac ≡ bd (mod n.)

Proof: Assume that n|b − a and n|d − c so there are r, s ∈ Z so nr = b − a and ns = d − c. Then
bd− ac = bd− bc+ bc− ac = b(d− c) + (b− a)c = bns+ nrc = n(bs+ rc). Set t = bs+ rc ∈ Z. to see
n|bd− ac and thus ac ≡ bd (mod n.)
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14. If a ≡ 3 (mod 4) and a ≡ 3 (mod 6) then a2 is divisible by 3.

15. If a ≡ 3 (mod 4) and a ≡ 3 (mod 6) then a2 ≡ 3 (mod 6.)

Proof: Assume that a ≡ 3 (mod 4) and a ≡ 3 (mod 6), meaning 4|a−3 and 6|a−3. Thus 4k = a−3 and
6l = a−3 for some k, l ∈ Z. Then a2 = a·a = (4k+3)(6l+3) = 24kl+18l+12k+9 = 6(4kl+3l+2k+1)+3.
Setting m = 4kl+ 3l+ 2k+ 1 ∈ Z shows us a2 = 6m+ 3 or that 6|a2 − 3. This means a2 ≡ 3 (mod 6.)

16. If a ≡ 2 (mod 4) and b ≡ 2 (mod 4) then ab is divisible by 4.

17. If a ≡ 3 (mod 4) and b ≡ 1 (mod 4) then ab+ b is divisible by 4.

18. If a is odd then a2 ≡ 1 (mod 4).

Proof: Assume a is odd and thus a = 2k+1 for k ∈ Z. Then 1−a2 = 1−(2k+1)2 = 1−(4k2−4k+1) =
−4k2 + 4k = 4(−k2 + k). Setting l to be the integer −k2 + k we see that four divides 1− a2 and thus
a2 ≡ 1 (mod 4).

19. If 1 ≡ a (mod 5) or 4 ≡ a (mod 5) then 1 ≡ a2 (mod 5).

20. If 2 ≡ a (mod 5) or 3 ≡ a (mod 5) then −1 ≡ a2 (mod 5).

Proof: We break things down into two cases.

Case 1: a ≡ 2 (mod 5)

Here 5 divides a − 2 so 5k = a − 2 for some integer k. Then a2 − −1 = a2 + 1 = (2 + 5k)2 + 1 =
4 + 20k + 25k2 + 1 = 5 + 20k + 25k2 = 5(1 + 4k + 5k2). Set l = 1 + 4k + 5k2 ∈ Z to see that 5|a2 + 1
which shows −1 ≡ a2 (mod 5).

Case 2: a ≡ 3 (mod 5)

We know 5m = a−3 for some integer m. Then a2−−1 = a2+1 = (5m+3)2+1 = 25m2+30m+9+1 =
25m2 + 30m+ 10 = 5(5m2 + 6m+ 2). Set n = 5m2 + 6m+ 2, which is an integer, to see that n|a2 + 1,
showing −1 ≡ a2 (mod 5).

21. If a is even then a3 ≡ 0 (mod 8).

22. If a is even then (a− 1)(a2 + a+ 1) ≡ 7 (mod 8).

23. If a is odd then 1 ≡ a4 (mod 8).

Proof: Assume a is odd and thus a = 2r+ 1 for r ∈ Z. Then a4−1 = 16k4 + 32k3 + 24k2 + 8k+ 1−1 =
8(2k4 + 4k3 + 3k2 + k). This shows 8|a4 − 1 which means 1 ≡ a4 (mod 8).

24. If a ≡ 1 (mod 3) then a3 ≡ 1 (mod 9).

25. If a ≡ 2 (mod 3) then a3 ≡ −1 (mod 9).



2.4. PROOFS INVOLVING RATIONAL AND IRRATIONAL NUMBERS 51

2.4 Proofs Involving Rational and Irrational Numbers

Prove the following statements. Feel free to use the fact that the integers are closed under addition and
multiplication. Also feel free to use the fact that a product of non-zero numbers is also non-zero and that a
rational number is zero iff the numerator is zero.

1. Zero is a rational number.

Proof: As zero is equal to a
b for a = 0 and b = 1(6= 0) we know zero is rational.

2. Negative one is a rational number.

3. The square of a rational number is rational.

Proof: Suppose a is a rational number. Then a = b
c for some b and c in the integers with c 6= 0.

Then a2 = ( bc )
2 = b2

c2 . Since c 6= 0 we know c2 6= 0. As both b2 and c2 are integers, this shows a2 is
rational.

4. The reciprocal of a non-zero rational number is rational.

5. Half of a rational number is a rational number.

6. The sum of a rational number with itself is rational.

Proof: Suppose a
b is a rational number. Thus a and b are integers with b 6= 0. Then a

b + a
b = 2a

b . As 2a
and b are integers with b 6= 0, we know this is rational.

7. The sum of a rational with an integer is rational.

8. The quotient of a rational with a non-zero integer is rational.

9. The product of two rational numbers is rational.

10. The quotient of a rational with a non-zero rational is rational.

Proof: Suppose a
b and c

d are rationals with the latter being non-zero. That means c 6= 0. We also know

that a, b, c, and d are integers, and that b and d are non-zero. Then (ab )/( cd ) = ad
bc . As b and c are both

non-zero, so is bc. Since we also know ad and bc are integers, this is a rational number.

11. The sum of two rational numbers is rational.

Proof: Suppose that a and b are rational numbers. Then a = p/q and b = r/s for p, q, r, s ∈ Z, q 6= 0
and s 6= 0. Notice a+ b = p/q+ r/s = ps/qs+ rq/sq = (ps+ rq)/qs. Set u = ps+ rq and v = qs. These
are in Z due to closure, and since q and s are nonzero, so is v. This shows a+ b = u/v for u, v ∈ Z and
v 6= 0.

12. The difference of two rational numbers is rational.

13. The average of two integers is a rational number.

14. The average of two rational numbers is a rational number.
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15. The product of a rational and an integer is rational.

Proof: Suppose that a is rational and b is an integer. We can then write a = c/d for c, d ∈ Z with d 6= 0.
Then ab = (c/d)b = (cb)/d. We know cb and d are in Z and d 6= 0 so this shows ab is rational.

16. If three times a number is irrational then the number is irrational.

17. If the sum of one and a number is irrational then the number is irrational.

Proof: We take the contrapositive and instead show that is a number is rational then one plus that
number is rational. Call our rational number a and write it as a = r

s for r, s ∈ Z with s 6= 0. Then
a+ 1 = r

s + s
s = r+s

s . Since both r + s and s are integers with s 6= 0 we get that a+ 1 ∈ Q.

18. If the square of a number is irrational then the number is irrational.

19. If the cube of a number is irrational then the number is irrational.

20. If a+ b is rational and a is rational then b is rational.

21. If a+ b is rational and a is irrational then b is irrational.

Proof: We take the contrapositive to get the statement: If b is rational then a + b is irrational or a is
rational. As P ⇒ (Q ∨ R) ≡ (P∧ ∼ Q)⇒ R this statement is equivalent to: If b is rational and a+ b
is rational then a is rational. This is the statement we choose to show.

Suppose b and a+ b are rational. Then b = c
d and a+ b = e

f for c, d, e, f ∈ Z and d and f not equal to

zero. Then a = (a+ b)− b = e
f −

c
d = ed−cf

fd . As ed− cf and fd are integers with fd 6= 0, this shows a
is rational.

22. If a+ b is irrational and a is rational then b is irrational.

23. If ab is rational and a is a non-zero rational then b is rational.

Proof: Assume that ab is rational and a is a non-zero rational. Thus ab = c
d and a = e

f with c, d, e, f ∈ Z
and non-zero d, e and f . Then e

f · b = c
d so b = cf

de . We know de is not zero since d and e are not zero.
As cf and de are integers, this shows b is rational.

24. If ab is rational and a is irrational and b is nonzero, then b is irrational.

25. If ab is irrational and a is rational then b is irrational.

26. If the average of two numbers is irrational they are not both rational.

Proof: We take the contrapositive and instead show that if both numbers are rational then their average
is rational8. Suppose that a and b are rational numbers. Then a = p

q and b = r
s for p, q, r, s ∈ Z, q 6= 0

and s 6= 0. Notice a+b
2 = 1

2 (a + b) = 1
2 (pq + r

s ) = 1
2 (psqs + rq

sq ) = 1
2 (ps+rqqs ) = ps+rq

2qs . Set u = ps + rq
and v = 2qs. These are in Z due to closure, and since q and s and 2 are nonzero, so is v. This shows
a+b
2 = u

v for u, v ∈ Z and v 6= 0 showing the average is rational.

27. If the average of two numbers is rational, then they are both rational or both irrational.

8When negating the second part we had to realize that if it’s not the case that at least one number is irrational then neither
is irrational, so both are rational.
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28. If the product of three numbers is irrational then at least one is irrational.

Disprove the following statements by finding a counterexample.

1. The sum of a rational and an integer is an integer.

2. The product of a rational and an integer is an integer.

Counterexample: The product of the rational 1
2 and the integer 1 is 1

2 which is not an integer.

3. The quotient of two integers is rational.

Counterexample: If a = 1 and b = 0 then the quotient is not rational9.

4. The quotient of a rational and an integer is rational.

5. The quotient of two rational numbers is rational.

6. The square root of a rational number is rational.

Counterexample: r = 2 is rational but
√
r is not.

7. The reciprocal of a rational number is rational.

8. The sum of two irrational numbers is irrational.

9. The difference of two irrational numbers is irrational.

10. The product of two irrational numbers is irrational.

11. The quotient of two irrational numbers is irrational.

12. The square of an irrational number is irrational.

Counterexample:
√

2 is irrational but its square is two, which is not.

13. The cube of an irrational number is irrational.

14. The average of two irrational numbers is irrational.

Counterexample: The average of
√

2 and 6−
√

2 is 3 which is rational.

15. The product of a rational number and an irrational number is irrational.

16. The product of a rational number and an irrational number is rational.

9In fact, it isn’t even a number.
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2.5 Positivity Proofs

If a real number x is positive, we write 0 < x. We say a < b if b− a is positive (and write 0 < b− a.)
We assume the following axioms:

• One is a positive number.

• A sum or product of positive numbers is positive. [Closure]

• Every number is exclusively either positive, negative or zero. [Tricotomy Principle]

Prove the following statements over R. You may assume the standard laws of algebra (multiplication
and addition are commutative, associative, the distributive law holds, etc.) Recall that xn is the product
x× x× · · ·x of x times itself n times.

1. The number 1 + 1 is positive 10.

2. The square of a positive real number is positive.

3. If cube of a positive number is positive.

Proof: Assume x is positive. Then x2 is a product of two positive numbers, so it is positive. Since both
x and x2 are positive, their product, which is x3, must also be positive.

4. The product of any three positive number is positive.

Proof: Let x, y and z be positive numbers. Then xy is positive, so (xy) times z is a product of two
positive numbers, and thus is positive.

5. If x is positive then x4 is positive.

6. If x is positive then 0 < x.

Proof: As x is positive, so is x+ 0. As 0 = −0 we know x− 0 is positive, which means 0 < x.

7. If 0 < x then x is positive.

Proof: Assume 0 < x, which means x− 0 is positive. As x− 0 = x, we know x is positive.

8. If 1 < x then x is positive.

Proof: If 1 < x then x− 1 is positive. As one is positive, the sum x− 1 + 1 = x is also positive.

9. If x is positive then x2 + x is positive.

10. If x− 1 is positive then x2 − x is positive.

Proof: Assume x − 1 > 0. This means x − 1 plus 1 must be positive since it is a sum of positive
numbers and thus x is positive. Now x2−x = x(x− 1) is a product of two positive numbers and hence
is positive.

11. If x− 1 is positive then so is x2 − 1.

10The name we give to this number is two.



2.5. POSITIVITY PROOFS 55

12. If x is positive then so is x2 + x+ 1.

13. If x < y and x is positive, then y is positive.

Proof: We know y − x and x are both positive, so their sum y is also positive.

14. If x < y then −y < −x.

Proof: Assume y − x is positive. As y − x = (−x)− (−y) we get that −y < −x.

15. If −y < −x then x < y.

Proof: Assume −y < −x so −x− (−y) is positive. As this equals y − x, we know y − x is positive and
x < y.

16. If x < y then x+ z < y + z.

Proof: Assume x < y, so y − x is positive. As y − x = y + z − x − z = (y + z) − (x + z) we know
(y + z)− (x+ z) is positive, which shows us x+ z < y + z.

17. If x < y then x− z < y − z.

18. If x < y and z is positive, then xz < yz.

Proof: Assume y − x and z are positive. Then their product (y − x)z = (yz) − (xz) is positive. This
tells us xz < yz.

19. If w < x and y < z then w + y < x+ z.

Proof: We know x − w and z − y are positive. Thus their sum is positive. Since (x − w) + (z − y) =
(x+ z)− (w + y) we get that w + y < x+ z.

20. If x < y and y < z then x < z.

Proof: Assume x < y and y < z. Thus 0 < y − x and 0 < z − y, which tells us that both y − x and
z−y are positive. Since a sum of positive numbers is positive, we know y−x+ z−y = z−x is positive
which tells us x < z.

21. If x and y are positive numbers and x < y then y2 − x2 is positive.

22. If x and y are positive numbers and x < y then xy2 − yx2 is positive.

23. If w < x and y < z and all four are positive, then wy < xz.

Proof: We know x − w and z − y are positive so (x − w)(z − y) = xz − wz − xy + wy is positive. As
wz and xy are products of two positive numbers, they are both positive, as well as their sum wz + xy.
We now know that xz − wz − xy + wy + (wz + xy) = xz − wy is positive and hence wy < xz.

24. If w < x and y < z and both z and w are positive, then wy < xz.

Note: This is very similar to the last problem, but we are asked to prove the same thing while assuming
less.

Proof: We know (x−w) and z are positive, so z(x−w) is positive. We know (z−y) and w are positive, so
w(z−y) is positive. Putting these together we get that z(x−w)+w(z−y) = zx−zw+wz−yw = zx−yw
is positive. This shows us wy < xz.
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25. Prove for any x and y that at most one of the following holds: a < b, b < a or a = b.

Proof: Start by assuming a = b. Here 0 = b − a and 0 = a − b. If a < b then b − a is positive, which
means that zero is positive. If b < a then a − b is positive, which means that zero is positive. Either
way, we get a contradiction. Thus if a = b then neither of the other two statements hold.

Now we only need show that a < b and b < a both cannot happen. Suppose a < b and b < a. Then
b− a and a− b are both positive. This means their sum b− a+ a− b = 0 must also be positive, which
is a contradiction.

26. If x is either positive or negative then −x is either positive or negative. 11

Proof: Suppose x is non-zero, but −x is zero. Then x = −(−x) = −0 = 0, a contradiction.

27. If x is positive then −x is negative.

Proof: If x is positive then x cannot equal zero by the Law of Trichotomy. Since x is non-zero, by
problem 26, we know −x is either positive or negative. If −x is positive then x + (−x) is a sum of
two positive numbers, hence positive. Thus zero is a positive number, which is a contradiction. We
conclude that −x can only be negative.

28. If x is negative then −x is positive.

Proof: We take the contrapositive and use the Law of Tricotomy to rewrite our statement. We get: “If
−x is positive or zero then x is negative or zero.” If −x is zero then x = −(−x) = −0 = 0, so we are
done in that case. This leaves the case where −x is positive.

If −x is positive then by problem 27, we can conclude −(−x) is negative, which means x is negative.

29. If x is negative and y is positive then x < y.

Proof: By problem 28 we know −x is positive. Thus y + (−x) = y − x is positive, which gives us
x < y.

30. If x < 0 then x is negative.

Proof: Assume 0− x is positive. As this equals −x, we know −x is positive and by problem 27, we get
that −(−x) = x is negative.

31. If x is negative then x < 0.

Proof: Assume x is negative. Then −x is positive so 0 + −x = 0 − x is positive, which shows us
x < 0.

32. A sum of negative numbers is negative.

Proof: Suppose x and y are negative. Then −x and −y are positive. Thus −x − y = −(x + y) is
positive. By problem 27, we get that −(−(x+ y)) = x+ y is negative.

33. A product of negative numbers is positive.

Proof: Suppose x and y are negative. By problem 28, we know −x and −y are positive. Then
(−x)(−y) = xy is a sum of positive numbers, which completes our proof.

11We could rewrite this as: “If x is non-zero then so is −x.”
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34. The product of a positive and negative number is negative.

Proof: Suppose x is positive and y is negative. Then by problem 28, we know (−y) is positive. This
tells us x(−y) = −(xy) is positive. By problem 27, we know xy is negative.

35. The cube of a negative number is negative.

36. If x is negative then x4 is positive.

37. If x < y and z is negative, then yz < xz.

Proof: Since y − x and −z are positive we know (y − x)(−z) = −yz + xz = xz − yz is positive. Thus
yz < xz.

38. If x < y and y is negative, then x is negative.

Proof: We know y − x is positive and by problem 28, −y is positive. Thus (y − x) + (−y) = −x is a
sum of positive numbers, hence positive. Since −x is positive, by problem 27, we conclude that x is
negative.

39. If x is positive and x+ y is negative then y is negative.

Proof: From problem 28, we know −(x + y) is positive. As x is positive, the sum x + −(x + y) = −y
is positive. By problem 27 we know y is negative.

40. If x is positive then 1/x is positive.

Proof: If 1/x is negative then x(1/x) = 1 is a product of a positive and negative, hence negative. This
is a contradiction. If 1/x = 0 then (x2)(1/x) = x2(0), which shows x = 0, contradicting the fact that
x is positive. This leaves one case left, that where 1/x is positive.

41. If x < y and z is positive, then x/z < y/z.

Proof: By problem 40, we know 1/z is positive. Thus (y − x)(1/z) = y/z − x/z is positive, hence
x/z < y/z.

42. If x is negative, then 1/x is negative.

Proof: We know −(1/x) is positive from problems 28 and 40. Thus by problem 27 −(−(1/x)) = 1/x is
positive.

43. If 1 < x then 1/x < 1.

Proof: If 1 < x then from problem 8, we know x is positive. By problem 40, we know 1/x is positive.
Since x− 1 and 1/x are positive, we get that (x− 1)(1/x) = 1− 1/x is positive and hence 1/x < 1.

44. If x and y are either both positive or both negative, and x < y then 1/y < 1/x.

Proof: We know (1/x)(1/y) is positive by problem 40. We also know y − x is positive. Thus
(1/x)(1/y)(y − x) = 1/x− 1/y is also positive, which tells us 1/y < 1/x.

45. Suppose exactly one of x and y is positive, and the other is negative. If x < y then 1/x < 1/y.
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2.6 Proof by Contradiction

Use proof by contradiction to prove the following statements about parity. Recall that one is not an even
number.

1. If the product ab is odd, then both a and b are odd.

Proof: Assume not. Then at least one of them is even. Without loss of generality we can assume a is
even, so we know a = 2k for some integer k. Then ab = 2kb. Setting l to be the integer kb shows us
that ab is even, a contradiction.

2. An integer cannot be both even and odd.

Proof: Suppose that a is both even and odd. Thus a = 2k and a = 2l + 1 for some integers k and l.
Then we know 2k = 2l + 1 so 1 = 2k − 2l = 2(k − l). Setting m to be the integer k − l shows us that
one is an even number, which is a contradiction.

3. A Pythagorean triple cannot have exactly one odd number12.

Proof: Assume that such a triple exists.

Case 1: c is odd. Here a2 + b2 = c2 where a = 2r, b = 2s and c = 2t + 1 for some r, s, t ∈ Z. Then
4r2 + 4s2 = 4t2 + 4t+ 1 so 1 = 4r2 + 4s2− 4t2− 4t = 2(2r2 + 2s2− 2t2− 2t). Setting u to be the integer
2r2 + 2s2 − 2t2 − 2t shows that one is an even number, a contradiction.

Case 2: a or b is odd. Without loss of generality, assume that it is a. Here a2+b2 = c2 where a = 2r+1,
b = 2s and c = 2t for some r, s, t ∈ Z. Then 4r2 + 4r + 1 + 4s2 = 4t2 so 1 = 4r2 + 4r + 4s2 + 4t2 =
2(2r2 + 2r + 2s2 + 2t2). Setting u to be the integer 2r2 + 2r + 2s2 + 2t2 shows that one is even, giving
us a contradiction.

4. A Pythagorean triple cannot have three odd numbers.

5. In a Pythagorean triple, either a or b must be even.

Proof: Suppose that a and b are both odd. Then a = 2r + 1 and b = 2s + 1 for some r, s ∈ Z. so
a2 + b2 = 4r2 + 4r + 1 + 4s2 + 4s+ 1 = 4(r2 + r + s2 + s) + 2.

Case 1: c is odd. Here c = 2t + 1 so c2 = 4t2 + 4t + 1. As a, b, c is a Pythagorean triple, we
know that 4(r2 + r + s2 + s) + 2 = 4t2 + 4t + 1, showing 1 = 4(r2 + r + s2 + s) + 2 − 4t2 − 4t =
2(2r2 + 2r + 2s2 + 2s+ 1− 2t2 − 2t). Since 2r2 + 2r + 2s2 + 2s+ 1− 2t2 − 2t is an integer, this shows
1 is an even number, a contradiction.

Case 2: c is even. Here c = 2t thus c2 = 4t2. We get that 4t2 = 4(r2 + r + s2 + s) + 2 so 2t2 =
2(r2 + r+ s2 + s) + 1. Here 1 = 2(t2 − r2 − r− s2 − s). As t2 − r2 − r− s2 − s is an integer, this shows
one is even, giving us a contradiction.

Use proof by contradiction to prove the following statements about positivity and inequality. Assume all
the rules and results from the positivity handout. Consider that a least element a is one where b < a cannot
happen for any b and a greatest element c is one where c < d cannot happen for any d.

1. The numbers x and −x cannot both be positive.

12A Pythagorean triple is a collection of three integers, a, b and c so that a2 + b2 = c2.
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2. It is impossible to have both x < y and y < x for any real numbers x and y.

Proof: Suppose not. Then y − x and x − y are both positive. Thus their sum y − x + x − y = 0 is
positive. This contradicts the Law of Tricotomy.

3. The integers have no greatest element.

Proof: Suppose a is the greatest integer. Then a < a+ 1 because (a+ 1)− a is one, which is positive.
This contradicts that a is the greatest element.

4. The integers have no least element.

5. There is no least element in the set { 1n : n ∈ N}. You may assume all the elements of N are positive.

Proof: Suppose not. Then for some k ∈ N, 1
k is the least element. 1

k+1 < 1
k because 1

k −
1
k+1 =

k+1
k(k+1) −

k
k(k+1) = k+1

k(k+1) is a product and quotient of positive numbers, hence positive. This is a

contradiction.

Use a proof by contradiction to prove the following statements about rational and irrational numbers.
Feel free to assume

√
2 is irrational.

1. The rational number 1
2 is not an integer.

Proof: Suppose it is. Then 1
2 = k for some k ∈ Z. Thus 1 = 2k, and since k is an integer, this shows 1

to be an even number. This gives us a contradiction.

2. The number
√

8 is irrational.

Proof: Suppose not. Then 2
√

2 =
√

8 = a
b for some integers a and b with b not equal to zero. Thus√

2 = a
2b . As both 2 and b are non-zero, so is 2b. We also know a and 2b are integers which shows

√
2

is a rational number. This is a contradiction.

3. The number 2−
√

2 is irrational.

4. The product of a non-zero integer and
√

2 is irrational.

5. A non-zero integer divided by
√

2 is irrational.

6. The number
√

2 divided by a non-zero integer is irrational.

7. The numbers
√

6 and
√

3 can not both be rational.

Proof: Suppose they both are rational. Thus
√

6 = a
b and

√
3 = c

d for a, b, c, d ∈ Z, b 6= 0 and d 6= 0.

Then their product
√

6
√

3 is ac
bd . This product also equals

√
18 or 3

√
2. Since 3

√
2 = ac

bd we know√
2 = ac

3bd . Since ac, 3bd ∈ Z and 3bd 6= 0, this shows
√

2 is a rational number, a contradiction.

8. The number
√

1 +
√

2 is irrational.

9. The number

√
1 +

√
1 +
√

2 is irrational.

Proof: Suppose not. Then for some integers a and b with b 6= 0, we get a
b =

√
1 +

√
1 +
√

2. Thus√
1 +
√

2 = (ab )2−1 = a2

b2 −1 = a2

b2 −
b2

b2 = a2−b2
b2 . This implies

√
2 = (a

2−b2
b2 )2−1 = (a

4−2a2b2+b4
b2 )− b2

b2 =
a4−2a2b2+b4−b2

b2 . As both a4 − 2a2b2 + b4 − b2 and b2 are integers and b2 is not zero, we get that
√

2 is
a rational number, which is a contradiction.
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10. The number
√

2
3

is irrational.

Proof: Assume that
√

2
3

is rational. Thus is equals a
b for a, b ∈ Z and b 6= 0. Then

√
2
3

=
√

2·
√

2·
√

2 =

2
√

2 = a
b so

√
2 = a

2b . Since a, 2b ∈ Z and 2b 6= 0 we have shown
√

2 is rational, a contradiction.

11. Prove that 3
√

2 is irrational.

12. Twice an irrational number is an irrational number.

Proof: Suppose not. Then there is some irrational number x where 2x is not irrational. Thus we can
write 2x = b

c where b, c ∈ Z and c 6= 0. This means x = b
2c . As 2c is a nonzero integer and b is an

integer, we have shown x to be rational, a contradiction.

13. Half of an irrational number is an irrational number.

14. The square root of an irrational number is irrational.

Proof: Suppose there is some irrational number x where
√
x is rational. Then

√
x = a

b for some a, b ∈ Z
and b 6= 0. This means x = a

b
2 = a2

b2 . As a2 and b2 are integers with b2 non-zero, we have shown x to
be rational. This gives us a contradiction.

15. The sum of an integer and an irrational number is irrational.

Proof: Suppose the sum of the integer a with the irrational number x is not irrational. Then a+x = b
c

for some b, c ∈ Z and c 6= 0. Then x = b
c − a = b

c −
ac
c = b−ac

c . As b− ac and c are integers with c 6= 0,
this shows that x is a rational number, which is a contradiction.

16. The sum of a rational number and an irrational number is irrational.

17. The product of a non-zero integer and an irrational number is irrational.

18. The product of a non-zero rational number and an irrational number is irrational.

19. An irrational number divided by a non-zero rational number is irrational.

20. A non-zero rational number divided by an irrational number is irrational.

Proof: Suppose not. Then the product of some non-zero rational a
b divided by an irrational number x

gives us a rational number c
d . Here a, b, c, d ∈ Z with b 6= 0 and d 6= 0. As (ab )/x = c

d we know a
b = c

dx.
Now c cannot be zero, because otherwise so would a

b and we know that rational is non-zero. Thus

x = a
b
d
c = ad

bc . As ad and bc are integers with bc non-zero, this shows x is rational, a contradiction.
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Induction

3.1 Induction with Sums and Products

Use induction to prove the following statements.

1. For each n ∈ N, 1 + 3 + 5 + · · ·+ (2n− 3) + (2n− 1) = n2.

2. For each n ∈ N, 1 + 3 + 5 + · · ·+ (2n− 1) + (2n+ 1) = (n+ 1)2.

Proof: For the basis case of n = 1 the left hand side is 1 + 3 and the right hand side is (1 + 1)2. These
are equal.

Now assume that

1 + 3 + 5 + · · ·+ (2k + 1) = (k + 1)2.

We must show

1 + 3 + 5 + · · ·+ (2k + 1) + (2(k + 1) + 1) = (k + 1 + 1)2.

1 + 3 + 5 + · · ·+ (2k + 1) + (2(k + 1) + 1) = (k + 1)2 + (2(k + 1) + 1) =

(k + 1)2 + (2(k + 1) + 1) = k2 + 2k + 1 + 2k + 3 = k2 + 4k + 4 = (k + 2)2

which is exactly what we needed to show.

3. For each n ∈ N, 1 + 4 + 7 + · · ·+ (3n− 2) = 3n2−n
2 .

4. For each n ∈ N, 1 + 4 + 7 + · · ·+ (3n+ 1) + (3n+ 4) = 1
2 (n+ 2)(3n+ 5).

Proof: For our basis case of n = 1 we get 1 + 4 + 7 = 1
2 · 3 · 8, which is true as both sides equal twelve.

Next we assume that

1 + 4 + 7 + · · ·+ (3k + 1) + (3k + 4) =
1

2
(k + 2)(3k + 5)

61
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and will show

1 + 4 + 7 + · · ·+ (3k + 1) + (3k + 4) + (3(k + 1) + 4) =
1

2
(k + 1 + 2)(3(k + 1) + 5).

Keeping in mind that the right hand side equals 1
2 (k + 3)(3k + 8) we will start with the left hand side

and confirm that the two are equal.

1 + 4 + 7 + · · ·+ (3k + 1) + (3k + 4) + (3(k + 1) + 4) =
1

2
(k + 2)(3k + 5) + (3(k + 1) + 4) =

1

2
(k + 2)(3k + 5) + (3k + 7) =

1

2
(k + 2)(3k + 5) +

1

2
(6k + 14) =

1

2
[(k + 2)(3k + 5) + (6k + 14)] =

1

2
[3k2 + 11k + 10 + 6k + 14] =

1

2
[3k2 + 17k + 24] =

1

2
(k + 3)(3k + 8).

5. For each n ∈ N, 2 + 5 + 8 + · · ·+ (3n− 1) = 3n2+n
2 .

Proof: In the basis case of n = 1 the statement is 2 = 3·1+1
2 which is true.

Now we assume that

2 + 5 + 8 + · · ·+ (3k − 1) =
3k2 + k

2

and wish to show that

2 + 5 + 8 + · · ·+ (3k − 1) + (3(k + 1)− 1) =
3(k + 1)2 + (k + 1)

2
.

The right hand side is simply 1
2 (k + 1)(3k + 4) so we simplify the left and work towards this.

2 + 5 + 8 + · · ·+ (3k − 1) + (3(k + 1)− 1) =
3k2 + k

2
+ (3(k + 1)− 1) =

3k2 + k

2
+ (3k + 2) =

3k2 + k

2
+

6k + 4

2
=

3k2 + 7k + 4

2
=

(k + 1)(3k + 4)

2
.

6. For each n ∈ N, 1 + 5 + 9 + · · ·+ (4n− 3) = 2n2 − n.

7. For each n ∈ N, 2 + 6 + 10 + · · ·+ (4n− 2) = 2n2.

8. For each n ∈ N, 1 + 6 + 11 + · · ·+ (5n− 4) = 5n2−3n
2 .

Proof: For our basis case of n = 1 we get 1 = 5−3
2 which is true.

Next we assume 1 + 6 + 11 + · · ·+ (5k − 4) = 5k2−3k
2 and will use this to show that 1 + 6 + 11 + · · ·+

(5k − 4) + (5(k + 1) − 4) = 5(k+1)2−3(k+1)
2 . Noting that the right hand side equals 5(k2+2k+1)−3k−3

2 =
5k2+10k+5−3k−3)

2 = 5k2+7k+2
2 , we proceed to simply the left until we arrive at this formula.
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1 + 6 + 11 + · · ·+ (5k − 4) + (5(k + 1)− 4) =
5k2 − 3k

2
+ (5(k + 1)− 4) =

5k2 − 3k

2
+

2

2
(5k + 1) =

5k2 − 3k + 10k + 2

2
=

5k2 + 7k + 2

2

9. For each n ∈ N, 6 + 12 + 18 + · · ·+ 6n = 3n2 + 3n.

10. For each n ∈ N, 6 + 11 + 16 + 21 + · · ·+ (5n+ 1) = n(5n+7)
2 .

11. For each n ∈ N, 1− 2 + 3− 4 + · · ·+ (2n− 1)− 2n+ (2n+ 1)− (2n+ 2) = −(n+ 1).

Proof: For a basis of n = 1 the left hand side is 1− 2 + 3− 4 and the right hand side is −(1 + 1) which
is equal.

Now assume that

1− 2 + 3− 4 + · · ·+ (2k − 1)− 2k + (2k + 1)− (2k + 2) = −(k + 1)

and we need to show that

1− 2 + 3− 4 + · · ·+ (2k− 1)− 2k+ (2k+ 1)− (2k+ 2) + (2(k+ 1) + 1)− (2(k+ 1) + 2) = −(k+ 1 + 1).

Notice that

1− 2 + 3− 4 + · · ·+ (2k − 1)− 2k + (2k + 1)− (2k + 2) + (2(k + 1) + 1)− (2(k + 1) + 2) =

−(k+ 1) + (2(k+ 1) + 1)− (2(k+ 1) + 2) = −k− 1 + 2k+ 2 + 1− 2k− 2− 2 = −k− 2 = −(k+ 1 + 1).

12. For each n ∈ N, 1− 3 + 5− 7 + · · ·+ (2n− 1)− (2n+ 1) = −2n.

13. For each n ∈ N, (2n)2 − (2n− 1)2 + (2n− 2)2 − (2n− 3)2 + · · ·+ 42 − 32 + 22 − 12 = n(2n+ 1).

Proof: For our basis case of n = 1 the equation becomes 22 − 12 = 1(2 + 1) which is true.

Now assume that we know

(2k)2 − (2k − 1)2 + (2k − 2)2 − (2k − 3)2 + · · ·+ 42 − 32 + 22 − 12 = k(2k + 1)

and we will show that

(2(k + 1))2 − (2(k + 1)− 1)2 + (2k)2 − (2k − 1)2 + (2k − 2)2 − (2k − 3)2 + · · ·+ 42 − 32 + 22 − 12

= (k + 1)(2(k + 1) + 1).

(2(k + 1))2 − (2(k + 1)− 1)2 + (2k)2 − (2k − 1)2 + (2k − 2)2 − (2k − 3)2 + · · ·+ 42 − 32 + 22 − 12 =
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(2(k + 1))2 − (2(k + 1)− 1)2 + k(2k + 1) = (2k + 2)2 − (2k + 1)2 + k(2k + 1) =

(4k2 + 8k + 4)− (4k2 + 4k + 1) + 2k2 + k = 2k2 + 5k + 3 = (k + 1)(2k + 3)

which is equal to what we needed to arrive at.

14. For each n ∈ N, 12 + 22 + 32 + · · ·+ (n− 1)2 + n2 = n(n+(1/2))(n+1)
3 .

Proof: Our basis case of n = 1 gives us the equation 12 = 1·(3/2)·2
3 which is true.

Now assume that

12 + 22 + 32 + · · ·+ (k − 1)2 + k2 =
k(k + (1/2))(k + 1)

3

and we will show

12 + 22 + 32 + · · ·+ (k − 1)2 + k2+(k + 1)2 =
(k + 1)(k + 1 + (1/2))(k + 2)

3
.

The right hand side equals 1
6 (k+ 1)(k+ 2)(2k+ 3) so we now proceed to simply the left until we arrive

at this result.

12 + 22 + 32 + · · ·+ (k − 1)2 + k2 + (k + 1)2 =
k(k + (1/2))(k + 1)

3
+ (k + 1)2 =

k(k + (1/2))(k + 1)

3
+

3(k + 1)2

3
=
k(k + (1/2))(k + 1) + 3(k + 1)2

3
=

1

3
(k(k + (1/2))(k + 1) + 3(k + 1)2) =

1

3
(k + 1)(k(k + (1/2)) + 3k + 3) =

1

3
(k + 1)(k2 +

7

2
k + 3) =

1

3
(k + 1)

1

2
(2k2 + 7k + 6) =

1

6
(k + 1)(2k + 3)(k + 2).

15. For each n ∈ N, 13 + 23 + 33 + · · ·+ (n− 1)3 + n3 =
(
n(n+1)

2

)2
.

16. For each n ∈ N, 2 + 22 + 23 + · · ·+ 2n−1 + 2n = 2n+1 − 2.

17. For each n ∈ N, 3 + 32 + 33 + · · ·+ 3n−1 + 3n = 1
2 (3n+1 − 3).

18. For each n ∈ N and r ∈ R− {1}, 1 + r1 + r2 + r3 + · · ·+ rn−1 + rn = rn+1−1
r−1 .

Proof: Our basis case of n = 1 makes the equation 1 + r = r2−1
r−1 which is true because r2−1

r−1 =
(r+1)(r−1)

r−1 = r + 1.

Assume now that

1 + r1 + r2 + r3 + · · ·+ rk−1 + rk =
rk+1 − 1

r − 1

and we will show

1 + r1 + r2 + r3 + · · ·+ rk−1 + rk + rk+1 =
rk+1+1 − 1

r − 1
.
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1 + r1 + r2 + r3 + · · ·+ rk−1 + rk + rk+1 =
rk+1 − 1

r − 1
+ rk+1 =

rk+1 − 1

r − 1
+
rk+1(r − 1)

r − 1
=

rk+1 − 1 + rk+1(r − 1)

r − 1
=
rk+1 − 1 + rk+2 − rk+1

r − 1
=
rk+2 − 1

r − 1
.

19. For each n ∈ N, 1 · 2 + 2 · 3 + 3 · 4 + · · ·+ n(n+ 1) = 1
3n(n+ 1)(n+ 2).

20. For each n ∈ N, 1
1·2 + 1

2·3 + 1
3·4 + · · ·+ 1

n(n+1) = n
n+1 .

21. For each n ∈ N, 2
1·3 + 2

2·4 + 2
3·5 + · · ·+ 2

(n−1)(n+1) + 2
n(n+2) = 3

2 −
2n+3

(n+1)(n+2) .

22. For each n ∈ N, n ∈ N, 3
(1·2)2 + 5

(2·3)2 + 7
(3·4)2 + · · ·+ 2n−1

((n−1)n)2 + 2n+1
(n(n+1))2 = 1− 1

(n+1)2 .

Proof: When n = 1 notice the our left hand side equals 3
(1·2)2 = 3

4 which is also equal to 1− 1
22 . That

gives us our basis case.

Next we assume 3
(1·2)2 + 5

(2·3)2 + 7
(3·4)2 + · · ·+ 2k−1

((k−1)k)2 + 2k+1
(k(k+1))2 = 1− 1

(k+1)2 and will show 3
(1·2)2 +

5
(2·3)2 + 7

(3·4)2 + · · ·+ 2k−1
((k−1)k)2 + 2k+1

(k(k+1))2 + 2k+3
((k+1)(k+2))2 = 1− 1

(k+2)2 .

Now by our assumption

3

(1 · 2)2
+

5

(2 · 3)2
+

7

(3 · 4)2
+ · · ·+ 2k − 1

((k − 1)k)2
+

2k + 1

(k(k + 1))2
+

2k + 3

((k + 1)(k + 2))2
=

1− 1

(k + 1)2
+

2k + 3

((k + 1)(k + 2))2
= 1− (k + 2)2

(k + 1)2(k + 2)2
+

2k + 3

((k + 1)(k + 2))2
=

1−
(

(k + 2)2

(k + 1)2(k + 2)2
− 2k + 3

((k + 1)(k + 2))2

)
= 1− (k + 2)2 − 2k − 3

((k + 1)(k + 2))2
=

1− k2 + 4k + 4− 2k − 3

((k + 1)(k + 2))2
= 1− k2 + 2k + 1

((k + 1)(k + 2))2
= 1− (k + 1)2

((k + 1)(k + 2))2
= 1− 1

(k + 2)2
.

23. Prove that 1
2! + 2

3! + 3
4! + · · ·+ n

(n+1)! = 1− 1
(n+1)! for all n ∈ N.

24. Prove that 1(1!) + 2(2!) + 3(3!) + · · ·+ (n− 1)(n− 1)! + n(n!) = (n+ 1)!− 1 for all n ∈ N.

25. For each n ∈ N, (1− 1
2 )(1− 1

3 )(1− 1
4 ) · · · (1− 1

n )(1− 1
n+1 ) = 1

n+1 .

26. For each n ∈ N, 1 · 3 · 5 · · · · · (2n− 3) · (2n− 1) = (2n)!
n!2n .

Proof: In the basis case of n = 1 the statement becomes 1 = 2!
1!·2 which is true.

Next assume that 1 ·3 ·5 · · · · · (2k−3) · (2k−1) = (2k)!
k!2k

and we will show that 1 ·3 ·5 · · · · · (2k−3) · (2k−
1) · (2k+ 1) = (2(k+1))!

(k+1)!2k+1 . The right hand side becomes (2k)!(2k+1)(2k+2)
k!(k+1)2k·2 which equals (2k)!

k!2k
· (2k+1)(2k+2)

2(k+1)
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or simply (2k)!
k!2k
· (2k + 1) so we start with the left and work towards this. Plugging in our assumption

into the left gives us

1 · 3 · 5 · · · · · (2k − 3) · (2k − 1) · (2k + 1) =
(2k)!

k!2k
(2k + 1)

so we are immediately done.
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3.2 Induction with Parity and Divisibility

Use induction to prove the following statements about divisibility over the integers.

1. Prove that n(n+ 1) is always even for any natural number n.

2. Prove that (n+ 1)(n+ 2) is always even for any natural number n.

3. If m is an even number, then mn is even for any n in N.

4. If m is an even number, then mn is divisible by four for any n in N.

Proof: For our basis step note that if m is even then m1 = m which is even.

Next we assume that mk is even and we will show mk+1 is even.

Notice that mk+1 = mk ·m. As mk is even and m is even we can write these as 2r and 2s for r, s ∈ N.
Thus mk ·m = 2r · 2s = 4rs. Setting t = rs ∈ Z shows this product is divisible by four.

5. If m is an odd number, then mn is odd for any n in N.

6. If m is an even number, then for any n in N with n > 1, mn is divisible by four.

7. Three divides n3 − n for all n ∈ N.

Proof: Note that when n = 1 our basis requires us to show three divides zero. This is true as three
times zero is zero.

Next assume that three divides k3 − k so for some r ∈ Z, 3r = k3 − k. We must show that three
divides (k + 1)3 − (k + 1). Now (k + 1)3 − (k + 1) = k3 + 3k2 + 3k + 1 − k − 1 = k3 + 3k2 + 2k =
k3 − k + (k + 3k2 + 2k) = 3r + (3k2 + 3k) = 3(r + k2 + k). Set s = r + k2 + k ∈ Z. to get that
3s = (k + 1)3 − (k + 1) thus showing (k + 1)3 − (k + 1) is divisible by three.

8. Three divides n3 + 8n− 9 for all n ∈ N.

9. Six divides n3 − n for all n ∈ N.

10. Five divides n5 − n for all n ∈ N.

11. Four divides (n3 − n)(n+ 2) for all n ∈ N.

Proof: For our basis case consider that when n = 1, (n3 − n)(n+ 2) is zero, which is divisible by four.

Next we assume that four divides (k3−k)(k+2), and will show it divides ((k+1)3− (k+1))(k+1+2).
We know 4r = (k3 − k)(k + 2) = k4 + 2k3 − k2 − 2k for some r ∈ Z. As

((k + 1)3 − (k + 1))(k + 1 + 2) = k4 + 6k3 + 11k + 6k = (k4 + 2k3 − k2 − 2k) + 4k3 + 12k2 + 8k =

4r + 4k3 + 12k2 + 8k = 4(r + k3 + 3k2 + 2k)

we can set s = r + k3 + 3k2 + 2k to show 4s = ((k + 1)3 − (k + 1))(k + 1 + 2). As s is an integer, we
know this expression is divisible by four, thus completing the proof.

12. Six divides 7n − 1 for all n ∈ N.
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13. Four divides 5n − 1 for all n ∈ N.

Proof: Basis Step - 4 Divides 51 − 1 since 4 divides 4.

Inductive Step - Assume that 4 divides 5k − 1 and show that 4 divides 5k+1− 1. Since 4 divides 5k − 1
we can write 5k − 1 = 4m for some m ∈ Z.

Now 5k+1−1 = 5·5k−1 = 5·(5k−1+1)−1 = 5·(4m+1)−1 = 5·4m+5−1 = 5·4m+4 = 4(5m+1) = 4n
for n = 5m+ 1 ∈ Z. This shows that 5k+1 − 1 is a multiple of 4.

14. Three divides 22n − 1 for all n ∈ N.
Proof: Basis step - 3 divides 22 − 1 since three divides three.

Inductive Step - Assume that 3 divides 22k − 1 and therefore 3r = 22k − 1 for some integer r. We will
show that 3 divides 22(k+1) − 1.

Note that 22(k+1)−1 = 22k ·4−1. Since 3r+ 1 = 22k we know this equals 4(3r+ 1)−1 which is 12r+ 3
or 3(4r + 1). Setting s = 4r + 1 ∈ Z completes the proof by showing 22(k+1) − 1 = 3s.

15. For all n ∈ N, 52n − 1 is divisible by four.

16. For all n ∈ N, 52n − 1 is divisible by twenty-four.

17. For each n ∈ N, 74n − 1 is divisible by one-hundred.

Proof: For our basis of n = 1 notice that 74 − 1 = 2400 which is divisible by one-hundred.

Next assume that 74k − 1 is divisible by one-hundred and we will show that 74(k+1) − 1 is as well. We
know 100r = 74k − 1 for some integer r. Now

74(k+1) − 1 = 74k+4 − 1 = 74k · 74 − 1 = (100r + 1) · 74 − 1 =

100r · 74 + 74 − 1 = 100r · 74 + 2400 = 100(74r + 24).

We can set s to be the integer 74r+ 24 to show that 100s = 74(k+1) − 1, which completes the proof by
showing one-hundred divides 74(k+1) − 1.

18. For each n ∈ N, 43n − 1 is divisible by nine.

19. Three divides 52n + 2 for all n ∈ N.

Basis Step - 3 divides 52 + 2 = 27 since 27 = 3 · 9
Inductive Step: Assume that 3 divides 52k + 2 and show that 3 divides 52(k+1) + 2.

Since 3 divides 52k + 2 we can write 52k + 2 = 3m for some m ∈ Z. Now

52(k+1) + 2 = 52k+2 + 2 = 52k · 52 + 2 = (52k + 2− 2) · 52 + 2 =

(3m− 2) · 52 + 2 = 3m · 52 − 2 · 52 + 2 = 3m · 52 − 48 = 3(m · 52 − 16) = 3l

for l = (m · 52 − 16) ∈ Z.

20. For all n in N, seven divides 36n + 6 .

21. For all n in N, three divides 5n − 2n.
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22. For all n in N, four divides 7n − 3n.

23. For all n in N, seven divides 11n − 4n.

Proof: For our basis of n = 1 notice that seven divides 111 − 41 = 7 because seven times one equals
seven.

Next we assume that seven divides 11k − 4k and thus 7r = 11k − 4k for some integer r. We wish to
show that seven divides 11k+1 − 4k+1. Now 11k+1 − 4k+1 = 11 · 11k − 4 · 4k. We know 11k = 7r+ 4k so
our expression equals

11(7r + 4k)− 4 · 4k = 7 · 11r + 11 · 4k − 4 · 4k = 7 · 11r + 7 · 4k = 7(11r + 7 · 4k).

Setting s = 11r + 7 · 4k ∈ Z we get 11k+1 − 4k+1 = 7s, which shows it to be divisible by seven.

24. For any number bigger than three, we can provide exact postage in 2 and 5 cent stamps. [This is the
same as asking to show 2r + 5s = n has a solution in integers for every n greater than three1.

25. For any number bigger than seven, we can provide exact postage in 3 and 5 cent stamps. [This is the
same as asking to show 3r + 5s = n has a solution in integers for every n > 7.

Proof: For our basis step note that when n = 8 we have 3(1) + 5(1) = 8.

Now assume that we can solve 3r + 5s = k and we must show that we can solve 3t+ 5u = k + 1 with
r, s, t, u ∈ Z.
If s > 0 then we can take 3(r + 2) + 5(s− 1) which equals 3r + 6 + 5s− 1 = (3r + 5s) + 1 = k + 1.

If s = 0 then we know r is at least 3 because 3r = k and k > 6. Thus we can subtract three from r and
add two to s. This gives is 3(r − 3) + 5(s+ 2) = (3r + 5s)− 9 + 10 = k + 1.

26. For any natural number n greater than two, 2n divides n!.

Proof: For our basis, note that when n is three both 2n and n! equal six. As six divides itself, this
completes this part of the proof.

Next we assume 2k divides k! and thus 2km = k! for some m ∈ Z. We wish to show 2(k + 1) divides
(k+ 1)!. We know (k+ 1)! = k!(k+ 1) = 2km(k+ 1) = 2(k+ 1)(mk). Set r to be the integer mk to see
that (k + 1)! = 2(k + 1)r, thus showing 2(k + 1) divides (k + 1)!.

27. For any natural number n greater than three, 6n divides n!.

28. For all n ∈ N, prove that 2n divides (2n)!.

Proof: For our basis of n = 1 we simply note that two divides two.

Next assume that 2k divides (2k)! and thus for some integer r, 2kr = (2k)!. We must show 2k+1 divides
(2(k + 1))!. Note that

(2(k + 1))! = (2k + 2)! = (2k + 1)!(2k + 2) = (2k)!(2k + 1)(2k + 2) =

2kr(2k + 1)(2k + 2) = 2kr(2k + 1)2(k + 1) = 2k+1r(2k + 1)(k + 1).

We set s to be the integer r(2k+ 1)(k+ 1) to show that (2(k+ 1))! = 2k+1s and thus prove (2(k+ 1))!
is divisible by 2k+1.

1Though this technically isn’t a straight out divisibility question, we are trying to show that n is the sum of a number
divisible by 2 and a number divisble by 5. This is why this question is placed in this section.
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29. The product of n odd numbers is also an odd number for any n in N.

30. The product of n even numbers is also an even number for any n in N.

31. The sum of 2n odd numbers is an even number for any n in N.

32. The sum of 2n− 1 odd numbers is an odd number for any n in N.

Proof: For our basis, notice that when there is just 2(1)− 1 = 1 odd, the total is odd.

Assume the sum of 2k− 1 odd numbers is an odd number and we will show that the sum of 2k+ 1 odd
numbers is an odd number.

If we add 2k + 1 odds we get a sum of the form a1 + a2 + · · ·+ a2k−1 + a2k + a2k+1. The first 2k − 1
of these sum to an odd by our inductive step, so we have b+ a2k + a2k+1.

We can write the sum as (2r + 1) + (2s+ 1) + (2t+ 1) for r, s, t ∈ Z which gives us 2(r + s+ t) + 3 =
2(r + s+ t+ 1) + 1. Setting u = r + s+ t+ 1 ∈ Z shows us this is odd.
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3.3 Induction with Inequalities

Use induction to prove the following statements. Recall that these problems tend to involve giving up a
certain amount of information at one step, since you rarely immediately get the outcome you want. Because
of this there are a variety of ways to solve these. Each problem also has two directions you can work in.

1. For all n ∈ N with n > 3, 53n+ 1 > 4
5n+ 42.

Proof: In a basis case of n = 4 we get 20
3 + 1 = 23

3 = 115
15 > 108

15 = 36
5 = 16

5 + 4.

Next we assume that 5
3k + 1 > 4

5k + 4 and we will show that 5
3 (k + 1) + 1 > 4

5 (k + 1) + 4. We know

5

3
(k + 1) + 1 =

5

3
k +

5

3
+ 1 =

(
5

3
k + 1

)
+

5

3
>

4

5
k + 4 +

5

3
>

4

5
k + 4 +

4

5
=

4

5
k +

4

5
+ 4 =

4

5
(k + 1) + 4

which completes our proof.

2. For all n ∈ N, n2 ≥ 2n− 1

3. For all n ∈ N with n ≥ 3, n2 ≥ 3n

4. For all n ∈ N with n ≥ 3, n2 > 2n+ 1

5. For all n ∈ N with n ≥ 2, n3 > 3n+ 1

Proof: The basis case of n = 2 is given by the fact that 23 = 8 > 7 = 3(2) + 1.

Assume now that k3 > 3k + 1. We must show (k + 1)3 > 3(k + 1) + 1 = 3k + 4. Then

(k + 1)3 = k3 + 3k2 + 3k + 1 > (3k + 1) + (3k2 + 3k + 1) = 3k2 + 6k + 2 > 3k + 2 + (3k2 + 3k) >

3k + 2 + (3(2)2 + 3(2)) = 3k + 2 + 18 > 3k + 4.

6. For all n ∈ N, n3 ≥ 3(n2 − n)

Proof: The basis case of n = 1 is taken care of by the fact that 13 = 1 ≥ 0 = 3(12 − 1).

Assume that k3 ≥ 3(k2 − k). We wish to show (k+ 1)3 ≥ 3((k+ 1)2 − (k+ 1)) = 3k2 + 3k. Notice that

(k + 1)3 = k3 + 3k2 + 3k + 1 ≥ 3(k2 − k) + 3k2 + 3k + 1 =

6k2 + 1 = 3k2 + (3k2) + 1 ≥ 3k2 + 3k

as k2 > k on N.
2Note that this proof and a few others here are doable easily without induction, however they are still good for practicing

induction.
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7. For all n ∈ N with n ≥ 2, n4 ≥ 2n3.

Proof: For the basis case of n = 2 notice 24 = 16 ≥ 2(2)3.

Next assume that k4 ≥ 2k3. To complete the proof we must show (k + 1)4 is greater or equal than
2(k + 1)3 which equals 2k3 + 6k2 + 6k + 2. Then

(k + 1)4 = k4 + 4k3 + 6k2 + 4k + 1 ≥ 2k3 + 4k3 + 6k2 + 4k + 1 =

6k3 + 6k2 + 4k + 1 = 2k3 + 6k2 + 4k + 1 + (4k3).

Since 4k3 = 2k3 + 2k3 ≥ 2k+ 1 we know our expression is bigger than 2k3 + 6k2 + 4k+ 1 + (2k+ 1) =
2k3 + 6k2 + 6k + 2.

8. For all n ∈ N, 2n + 1 ≤ 3n.

9. For all n ∈ N with n ≥ 2, 2n + 5 ≤ 3n.

Proof: Our basis case here is n = 2, which gives us 9 ≤ 9.

Assume now that 2k + 5 ≤ 3k and we will show 2k+1 + 5 ≤ 3k+1. Now

2k+1 + 5 = 2 · 2k + 5 ≤ 2(3k − 5) + 5 = 2 · 3k − 10 + 5 =

2 · 3k − 5 < 2 · 3k < 3 · 3k = 3k+1

.

10. For all n ∈ N with n ≥ 2, 3n + 7 ≤ 4n.

11. For all n ∈ N,
(
3
2

)n ≥ n+
(
1
2

)n
.

12. Given a, n ∈ N,
(
a+2
2

)n ≥ n+
(
a
2

)n
.

Proof: Let a be any fixed natural and we will use a proof by induction on n. When n = 1 we know
a+2
2 = a

2 + 2
2 = 1 + a

2 so our statement is true.

Next we assume that
(
a+2
2

)k ≥ k +
(
a
2

)k
and will show

(
a+2
2

)k+1 ≥ (k + 1) +
(
a
2

)k+1
.

Now(
a+ 2

2

)k+1

=
a+ 2

2

(
a+ 2

2

)k
=
a

2

(
a+ 2

2

)k
+

2

2

(
a+ 2

2

)k
≥ a

2
(k +

(a
2

)k
)

+ k +
(a

2

)k
=

a

2
k +

(a
2

)k+1

+ k +
(a

2

)k
=
(a

2

)k+1

+ k +

(
a

2
k +

(a
2

)k)
Now the term (ak2 + (a2 )k) is always at least one. When k = a = 1 it equals one, and otherwise ak

2
alone is at least 2

2 which equals one. Thus (a2 )k+1 + k + (a2k + (a2 )k) ≥ (a2 )k+1 + k + 1, completing our
proof.
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13. Given a, n ∈ N, an + 2a+ 1 ≤ (a+ 1)n for all n ≥ 2.

Proof: For our basis case we must show a2 + 2a + 1 ≤ (a + 1)2, which is true because the sides are
equal.

Assume that ak + 2a+ 1 ≤ (a+ 1)k and we must show ak+1 + 2a+ 1 ≤ (a+ 1)k+1. We know

ak+1 + 2a+ 1 = a · ak + 2a+ 1 = a · ak + 2a+ 1 ≤ a · ((a+ 1)k − 2a− 1) + 2a+ 1 =

a(a+ 1)k − 2a2 − 1 + 2a = a(a+ 1)k − 2a(a− 1)− 1.

Noting both a and a− 1 are positive shows us −2a(a− 1)− 1 is negative and thus

a(a+ 1)k − 2a(a− 1)− 1 ≤ a(a+ 1)k < (a+ 1)(a+ 1)k = (a+ 1)k+1.

14. For all n ∈ N with n ≥ 4, 2n ≥ n2.
Proof: For our basis case of n = 4 note that 24 = 16 = 42.

Next assume that 2k ≥ k2 and we will show 2k+1 ≥ (k + 1)2. We have

2k+1 = 2 · 2k ≥ 2k2 = k2 + k2 > k2 + 3k = k2 + 2k + k > k2 + 2k + 1 = (k + 1)2.

Here we used that k > 3 and k > 1 respectively in order to get our inequalities.

15. For all n ∈ N with n ≥ 10, 2n ≥ n3 [Hint: Feel free to use that n2 > 2n+ 1 for n ≥ 3 from a previous
problem on this sheet.]

16. For all n ∈ N with n ≥ 3, n! > ( 3
2 )n

17. For all n ∈ N with n ≥ 4, n! > 2n.

18. For all n ∈ N with n ≥ 4, n! > n2.

Proof: For our basis case, note that when n = 4, n! = 24 > 9 = n2.

Next assume that k! > k2 and we will show (k + 1)! > (k + 1)2. We know

(k + 1)! = (k!)(k + 1) = k · k! + k! > k · k2 + k2 = k2 + k3.

As k3 > 4 · 1 · k = 2k + 2k > 2k + 1 we get that k2 + k3 > k2 + 2k + 1 = (k + 1)2 which completes our
argument.

Alternate proof: We can use the basis case as before, and still assume k! > k2, but start with (k+ 1)2.
We see that

(k + 1)2 = k2 + 2k + 1 ≤ k! + 2k + 1 < k! + 2k + k = k! + 3k < k! + k!k = k!(k + 1) = (k + 1)!.

We used the fact that 1 < k and that 3 < k!, both of which are true as we are starting at four.

19. For all n ∈ N with n ≥ 12 we have n! > 5n.

20. For all n ∈ N with n ≥ 5 we have n! > 3n−1.
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21. For all n ∈ N with n ≥ 5 we have (n!)2 > 5n.

Proof: For our basis case of n = 5 we get (120)2 = 14400 > 3125 = 55.

Now assume that (k!)2 > 5k and we want to show (k + 1!)2 > 5k+1. We know

(k + 1!)2 = (k!(k + 1))2 = k!k!(k + 1)2 > 5k · 5k · (k + 1)2 > 5k · 5k > 5k · 5 = 5k+1.

22. For all n ∈ N with n ≥ 4 we have (n!)3 > 5n.

23. For all n ∈ N with n ≥ 4 we have 30(n!) > 5n.

24. For all n ∈ N, n! ≤ nn.

Proof: For our basis of n = 1 note that 1! = 1 = 11.

Now assume k! ≤ kk and we will show (k + 1)! ≤ (k + 1)(k+1). We have

(k + 1)! = k! · k ≤ kk · k < (k + 1)k(k + 1) = (k + 1)(k+1)

.

25. For all n ∈ N, 2n + n! ≤ (n+ 2)!

26. For all n ∈ N, 3n + n! ≤ (n+ 3)!

Proof: When n = 1 we get 3 + 1 ≤ 4! which is true.

Next we assume 3k+k! ≤ (k+3)! and wish to show 3k+1+(k+1)! ≤ (k+4)!. Knowing 3k ≤ (k+3)!−k!
we can see

3k+1 + (k + 1)! = 3 · 3k + (k + 1)! ≤ 3(k + 3)!− 3k! + (k + 1)! ≤

3(k + 3)! + (k + 1)! ≤ 3(k + 3)! + (k + 3)! = 4(k + 3)! < (k + 4)(k + 3)! = (k + 4)!

.

27. For all n ∈ N with n ≥ 6, 4n + n! ≤ (n+ 1)!

Proof: When n = 6 we have a basis case of 4n + n! = 4816 ≤= 5040 = (n+ 4)!

Next assume that 4k + k! ≤ (k + 1)! and we will show 4k+1 + (k + 1)! ≤ (k + 2)!. We have

4k+1 + (k + 1)! = 4 · 4k + (k + 1)! ≤

4((k + 1)!− k!) + (k + 1)! = 5(k + 1)!− k! < 5(k + 1)!

As k ≤ 6 we know 5 < k + 2 and thus 5(k + 1)! < (k + 2)(k + 1)! = (k + 2)! completing the proof.

28. For all a and n in N, an + n! ≤ (a+ 3)!

29. If a is a positive real constant then for all n ∈ N, (1 + a)n ≥ 1 + na.
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30. For all n ∈ N, 1 + 1
2 + 1

3 + · · ·+ 1
n ≤

n+2
2

Proof: With our basis case of n = 1 we get 1 < 3
2 .

Next assume 1 + 1
2 + 1

3 + · · ·+ 1
k ≤

k+2
2 and we will show 1 + 1

2 + 1
3 + · · ·+ 1

k + 1
k+1 ≤

k+3
2 . Substituting

our inductive hypothesis gives us that

1 +
1

2
+

1

3
+ · · ·+ 1

k
+

1

k + 1
≤ k + 2

2
+

1

k + 1
=
k + 2 + 2

k+1

2
.

This last fraction is less than or equal to three because 2
k+1 is less than or equal to one.
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3.4 Induction with Recurrence Relations

For the following questions, recall that the Fibonacci Numbers are given by the recurrence relation

f1 = f2 = 1, fn = fn−1 + fn−2.

Define the Jacobsthal numbers by setting J1 = J2 = 1 and using the recurrence

Jn+2 = Jn+1 + 2Jn.

1. Let r be any positive real number and define a0 = 1, an = ran−1. Prove that an = rn for all n ∈ N.
Proof: a0 = 1 = r0, which gives us our basis case.

Assume ak = rk and we must show ak+1 = rk+1. ak+1 = rak = r · rk = rk+1 so we are done.

2. Let c be any positive real number and define a1 = c, an = 1
2 (c + an−1). Prove that 0 ≤ an ≤ c for all

n ∈ N.
Proof: As a1 = c ≤ c we have our basis case.

Next assume ak ≤ c and we will show ak+1 ≤ c. Note that ak+1 = 1
2 (c+ ak) ≤ 1

2 (c+ c) = 2c
2 = c which

completes the proof.

3. Let a1 = 1 and an = nan−1. Prove that an = n! for all n ∈ N.

4. Let a1 = 1 and an = an−1 + 2n− 1. Prove that an = n2 for all n ∈ N.

5. Let a1 = 1 and an = an−1 + 1
2n−1 . Prove that an = 2(1− 1

2n ) for all n ∈ N.

6. Let r be any real number not equal to one. Let a1 = 1 and an = an−1 + rn−1. Prove that an = 1−rn
1−r

for all n ∈ N.
Proof: For our basis note that when n = 1 we have a1 = 1 which equals 1−r1

1−r though only because
r 6= 1.

Next assume ak = 1−rk
1−r and we will show ak+1 = 1−rk+1

1−r . We know

ak+1 = ak + rk =
1− rk

1− r
+ rk =

1− rk

1− r
+
rk(1− r)

1− r
=

1− rk

1− r
+
rk − rk+1

1− r
=

1− rk+1

1− r
.

7. Consider the recurrence given by an+2 = 2an+1 + 3an with a1 = a2 = 1. Prove that for any n ∈ N,
an ≤ 3

2 (3n).

Proof: For our basis cases note that when n = 1 we have 1 ≤ 9
2 and when n = 2 we get 1 ≤ 27

2 .

Next assume that ak ≤ 3
2 (3k) and we will show ak+1 ≤ 3

2 (3k+1). Now ak+1 = 2ak + 3ak−1 ≤ 2 · 32 (3k) +
3 · 32 (3k−1) = 2

2 (3k+1) + 1
2 (3k+1) = 3

2 (3k+1).

8. Consider the recurrence given by an+2 = 2an+1 + 3an with a1 = a2 = 1. Prove that for any n ∈ N,
an = 1

2 (3n + (−1)n).
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9. Consider the recurrence given by an+2 = 2an+1 + 3an with a1 = 0 and a2 = 1. Prove that for any
n ∈ N, an ≤ 3

4 (3n).

10. Consider the recurrence given by an+2 = 2an+1 + 3an with a1 = 0 and a2 = 1. Prove that for any
n ∈ N, an = 1

4 (3n − (−1)n).

11. Prove that fn is positive for any n.

12. Prove that f1 + f2 + · · ·+ fn = fn+2 − 1.

13. Prove that f1 + f3 + · · ·+ f2n−1 = f2n.

14. Prove that f2 + f4 + · · ·+ f2n = f2n+1 − 1.

15. Prove that f1 + f4 + · · ·+ f3n−2 = 1
2f3n.

16. Prove that f2 + f5 + · · ·+ f3n−1 = 1
2 (f3n+1 − 1).

Proof: For our basis case note that the statement holds for n equal to 1 as f2 = 1+ 1
2 (3−1) = 1

2 (f4−1).

Next assume f2 +f5 + · · ·+f3n−1 = 1
2 (f3n+1−1) and we will show that f2 +f5 + · · ·+f3n−1 +f3n+2 =

1
2 (f3n+4 − 1). We know by our assumption that

f2 + f5 + · · ·+ f3n−1 + f3n+2 =
1

2
(f3n+1 − 1) + f3n+2 =

1

2
(f3n+1 − 1 + 2f3n+2) =

1

2
(f3n+1 + f3n+2 + f3n+2 − 1) =

1

2
(f3n+3 + f3n+2 − 1) =

1

2
(f3n+4 − 1).

17. Prove that f3 + f6 + · · ·+ f3n = 1
2 (f3n+2 − 1).

18. Prove that fn+2 + fn−2 = 3fn for all n ≥ 3.

Proof: For our basis case, note that the statement holds for n equal to 3 as f5 + f1 = 5 + 1 = 6 = 3f3.

Now assume that fm+2 + fm−2 = 3fm for all m ≤ k and we will show fk+3 + fk−1 = 3fk+1. We know

fk+3 + fk−1 = fk+2 + fk+1 + fk−2 + fk−3 = fk+2 + fk−2 + fk+1 + fk−3.

Using our assumption form = k andm = k−1 we get 3fk+3fk−1 which equals 3(fk+fk+1) = 3fk+2.

19. Prove that fn+6 − fn = 4fn+3.

20. Prove that f21 + f22 + · · ·+ f2n = fnfn+1.

21. Prove that f1f2 + f2f3 + · · ·+ f2n−1f2n = f22n.

Proof: When n = 1 notice that f1f2 = f22 since 1 ·1 = 12. When n = 2 we have f1f2 +f2f3 +f3f4 = f24
since 1 · 1 + 1 · 2 + 2 · 3 = 323.

3Since the last term in the sum must start with f2n−1, when n = 2 we must stop at f3f4. This is why we get three terms
with only n = 2.
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Next assume that f1f2 + f2f3 + · · · + f2m−1f2m = f22m for all m ≤ k, and we will show that f1f2 +
f2f3 + · · ·+ f2m−1f2m + f2mf2m+1 + f2m+1f2m+2 = f22(m+1). We get

f1f2 + f2f3 + · · ·+ f2m−1f2m + f2mf2m+1 + f2m+1f2m+2 =

f22m + f2mf2m+1 + f2m+1f2m+2 = f2m(f2m + f2m+1) + f2m+1f2m+2 =

f2mf2m+2 + f2m+1f2m+2 = (f2m + f2m+1)f2m+2 = f2m+2f2m+2 = f22m+2.

22. Prove that f1f2 + f2f3 + · · ·+ f2nf2n+1 = f22n+1 − 1.

23. Prove that f2n = fn+1fn−1 − (−1)n for all integers n ≥ 2.

Proof: For our basis cases, we can check n = 2 and n = 3 to see f22 = 1 = 2 · 1− 1 = f3f1 − (−1)2 and
f23 = 4 = 3 · 1 + 1 = f4f2 − (−1)3.

Now assume that f2m = fm+1fm−1 − (−1)m for all integers 2 ≤ m ≤ k. and we will show f2k =
fk+1fk−1 − (−1)k. Since

f2k+1 = (fk + fk−1)2 = f2k + 2fkfk−1 + f2k−1

, using our assumption on m = k − 1 gives us

f2k + 2fkfk−1 + fkfk−2 − (−1)k−1 = fk(fk + 2fk−1 + fk−2)− (−1)k−1 =

fk((fk + fk−1) + (fk−1 + fk−2))− (−1)k−1 = fk(fk+1 + fk)− (−1)k−1 = fkfk+2 − (−1)k−1.

Since (−1)k−1 = (−1)k+1 for any integer k, this is exactly what we needed to show.

24. Prove that f2n = f2n+1 − f2n−1.
Proof: For our basis cases, we can check n = 2 and n = 3 to see f4 = 3 = 4 − 1 = f23 − f21 and
f6 = 8 = 32 − 12 = f24 − f22 .
Next assume the statement is true for all m ≤ k and we will show f2(k+1) = f2k+2 − f2k which is equal
to f2n+1 + 2fnfn+1. Now

f2(k+1) = f2k+2 = f2k+1 + f2k = 2f2k + f2k−1 = 3f2k − f2k−2 = 3f2k − f2(k−1).

Now our indices are both even so we can apply our assumption twice to get

3f2k − f2(k−1) = 3f2k+1 − 3f2k−1 − f2k + f2k−2 =

f2k+1 + 2fnfn+1 + (2f2n+1 − 3f2n−1 − 2fnfn+1 − f2n + f2n−2).

If we can show the term in parenthesis is zero, we are done, but this is possible by replacing each fn+1

by fn + fn−1 and the fn−2 with fn − fn−1.

25. Prove that for any n ∈ N, f3n is even and f3n−1 and f3n−2 are odd.

Proof: For our basis note that f3 = 2 which is even but f2 and f1 are one which is odd.

Now assume that f3k is even and f3k−1 and f3k−2 are odd. We must show that f3(k+1) = f3k+3 is
even, and that f3k+2 and f3k+1 are odd. First f3k+1 is f3k + f3k−1 which we know by our assumption
is an even plus an odd, hence odd. Similarly f3k+2 is f3k+1 + f3k which we now know is an odd plus
an even, hence also odd. Finally f3k+3 = f3k+2 + f3k+1 both of which we have shown to be odd, hence
this sum is even, completing the proof.
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26. Find the flaw in the following proof that claims to show that fn is even for all n ≥ 3.

“Proof:” When n = 3 we know fn = 2 which is even.

Now assume that fm is even for all m ≤ k and we will show fk+1 is even. fk+1 = fk + fk−1 which is a
sum of two evens by our assumption. Therefore fk+1 is even.

27. For all natural numbers n, prove that Jn ≤ 1
2 · 2

n for all n.

Proof: For our basis cases we have J1 = 1 ≤ 1
2 (21) and J2 = 1 ≤ 2 = 1

2 (22).

Now we assume that Jm ≤ 1
2 (2m) for all m ≤ k and will show Jk+1 ≤ 1

2 (2k+1). We have

Jk+1 = Jk + 2Jk−1 ≤
1

2
2k + 2

1

2
2k−1 =

1

2
(2k + 2 · 2k−1)

=
1

2
(2 · 2k) =

1

2
2k+1.

28. For all natural numbers n, prove that Jn ≥ 1
4 · 2

n for all n.

Proof: For our basis cases we have J1 = 1 ≥ 1
2 = 1

4 (21) and J2 = 1 = 1
4 (22).

Now we assume that Jm ≥ 1
4 (2m) for all m ≤ k and will show Jk+1 ≥ 1

4 (2k+1). We have

Jk+1 = Jk + 2Jk−1 ≥
1

4
2k + 2

1

4
2k−1 =

1

4
(2k + 2 · 2k−1)

=
1

4
(2 · 2k) =

1

4
2k+1.

29. For all n ∈ N, prove that Jn = 1
3 (2n − (−1)n).

Proof: When n = 1 we have J1 = 1 = 2+1
3 = 1

3 (21 − (−1)1) and when n = 2 we have J2 = 1 = 4−1
3 =

1
3 (22 − (−1)2), both of which are true. This gives us our basis cases.

Next assume that Jm = 1
3 (2m − (−1)m) for each m ≤ k and we will show Jk+1 = 1

3 (2k+1 − (−1)k+1).
Now

Jk+1 = Jk + 2Jk−1 =
1

3
(2k − (−1)k) + 2 · 1

3
(2k−1 − (−1)k−1) =

1

3
(2k − (−1)k + 2 · 2k−1 − 2 · (−1)k−1) =

1

3
(2k + 2 · 2k−1 − (−1)k + 2 · (−1)k) =

1

3
(2k + 2k − (1− 2)(−1)k) =

1

3
(2 · 2k − (−1) · (−1)k) =

1

3
(2k+1 − (−1)k+1).

30. For all n ∈ N, prove that J2n = 1
3 (4n − 1).

31. For all n ∈ N, prove that J2n+1 = 2
3 (4n − 1) + 1.
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32. For all natural numbers greater than two, 5Jn = Jn+2 + 4Jn−2.

Proof: When n = 3 we get

5J3 = 5 · 3 = 15 = 11 + 4 · 1 = J5 + 4J1

and when n = 4 we have

5J4 = 5 · 5 = 25 = 21 + 4 · 1 = J6 + 4J2.

This completes our basis cases.

Next assume that 5Jm = Jm+2 + 4Jm−2 for all m ≤ k, and we will show that 5Jk+1 = Jk+3 + 4Jk−1.
Using strong induction, we have

5Jk+1 = 5(Jk + 2Jk−1) = 5Jk + 2(5Jk−1) = Jk+2 + 4Jk−2 + 2(Jk+1 + 4Jk−3) =

Jk+2 + 2Jk+1 + 4Jk−2 + 8Jk−3 = Jk+2 + 2Jk+1 + 4(Jk−2 + 2Jk−3) = Jk+3 + 4Jk−1.

33. For any natural number n, prove that the sum of the first 2n− 1 Jacobsthal numbers is J2k.

Proof: We are trying to show J1 + J2 + · · ·+ J2n−1 = J2n. For n = 1 we get J1 = J2 which is true. For
n = 2 we have J1 + J2 + J3 = J4 which is true since 1 + 1 + 3 = 5.

Next assume J1 + J2 + · · · + J2k−1 = J2k, and we must show J1 + J2 + · · · + J2k−1 + J2k+1 = J2k+2.
We know

(J1 + J2 + · · ·+ J2k−1) + J2k + J2k+1 = J2k + J2k + J2k+1 = J2k+1 + 2J2k = J2k+2.

34. Prove the sum J2 + J3 + · · ·+ Jn−1 + Jn = 1
2 (Jn+2 − 3) for any n ∈ N.

35. For any n ∈ N with n ≥ 2 prove that J2
n = Jn+1Jn−1 + (−2)n−1.

Proof: For our basis cases, notice that J2
2 = J3J1+(−2)1 because 12 = 3·1+(−2), and J2

3 = J4J2+(−2)2

because 32 = 5 · 1 + 4.

Next assume that J2
m = Jm+1Jm−1 +(−2)m−1 for all m ≤ k and we must show J2

k+1 = Jk+2Jk+(−2)k.
We apply the inductive hypothesis only once and only to J2

k−1 when we take

J2
k+1 = (Jk + 2Jk−1)2 = J2

k + 4JkJk−1 + 4J2
k−1 = J2

k + 4JkJk−1 + 4(JkJk−2 + 2k−2) =

J2
k + 4JkJk−1 + 4JkJk−2 + 22 · 2k−2 = (J2

k + 2JkJk−1) + (2JkJk−1 + 4JkJk−2) + 2k =

Jk(Jk + 2Jk−1) + 2Jk(Jk−1 + 2Jk−2) + 2k = Jk(Jk+1) + 2Jk(Jk) + 2k =

Jk(Jk+1 + 2Jk) + 2k = Jk(Jk+2) + 2k.

36. Prove that all the Jacobsthal numbers are odd.

37. For any n ∈ N prove that the number J3n is divisible by three.
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38. For any n ∈ N prove that the number J4n is divisible by five.

Proof: For our basis step notice that J4 = 5 which is divisible by five.

Next assume that five divides J4k and thus 5r = J4k and we will show that five divides J4(k+1). Now

J4(k+1) = J4k+4 = J4k+3 + 2J4k+2 = (J4k+2 + 2J4k+1) + 2J4k+2 = 2J4k+1 + 3J4k+2 =

2J4k+1 + 3(J4k+1 + 2J4k) = 5J4k+1 + 6J4k = 5J4k+1 + 6 · 5r = 5(J4k+1 + 6r).

Setting s to be the integer J4k+1 + 6r shows that five divides J4(k+1).

39. For any n ∈ N prove that the number J5n is divisible by eleven.

40. Find the flaw in the following incorrect proof that all Jacobsthal numbers are divisble by three.

Incorrect proof: Assume that Jm is divisible by three for all m ≤ k and we will show that Jk+1 is
divisible by three. Jk+1 = Jk + 2Jk−1. We know Jk and Jk−1 are divisible by three so Jk = 3r and
Jk−1 = 3s for some r, s ∈ Z. Thus Jk+1 = Jk + 2Jk−1 = 3r + 2(3s) = 3(r + 2s). Set t to be the integer
r + 2s to get Jk+1 = 3t and thus show Jk+1 is divisible by three.
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Chapter 4

Proofs with Sets and Set Operations

4.1 Proofs with Subsets and Equality

Prove the following statements are true for all sets A,B and C.

1. ∅ ⊆ A
Proof: We must show if x ∈ ∅ then x ∈ A but the first part is false so the conditional is true.

2. A ⊆ A
Proof: We must show if x ∈ A then x ∈ A. Since P ⇒ P is a tautology this is true.

3. If A ⊆ B and B ⊆ C then A ⊆ C.

Proof: Assume A ⊆ B and B ⊆ C and assume z ∈ A. Then since z ∈ A and x ∈ A⇒ x ∈ B, we know
z ∈ B. Since z ∈ B and x ∈ b⇒ x ∈ C, we know z ∈ C.

4. Any set with no elements is equal to the empty set.

Proof: Let A be a set with no elements. We must show both A ⊂ ∅ and ∅ ⊂ A. This means we have
to show x ∈ A ⇒ x ∈ ∅ and x ∈ ∅ ⇒ x ∈ A. The first part of both conditional statements is false, so
both are true.

5. Prove that if A ⊆ B and A 6= ∅ then B 6= ∅.
Proof: Assume A ⊆ B and A 6= ∅. Since A is not empty there is some element z ∈ A. Since
x ∈ A⇒ x ∈ B and z ∈ A we know z ∈ B. Since z ∈ B we know B 6= ∅.
Proof: (Alternate Proof by Contradiction) Assume A ⊆ B and A 6= ∅ and B = ∅. Since A 6= ∅ we know
there is some z ∈ A. Since A ⊆ B we know z ∈ B, a contradiction.

6. Prove that if A ⊆ ∅ then A = ∅.

7. Prove that if A ⊆ B and x /∈ B then x /∈ A.

8. Prove that if A ⊆ B and B ⊆ C and C ⊆ A then A = B.

9. Prove that if A ⊆ B and B ⊆ C and C ⊆ A then A = B and B = C and A = C.

83
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10. Prove that if A ⊆ B and C * B then C * A.
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4.2 Proofs with Power Sets and Cartesian Products

Prove the following statements are true for all sets A,B,C and D.

1. Prove if A ⊆ B then P(A) ⊆ P(B).

Proof: Suppose x ∈ P(A), then x ⊆ A. Since x ⊆ A and A ⊆ B, we know (by transitivity of ⊆) that
x ⊆ B. This means x ∈ P(B).

2. Prove if P(A) ⊆ P(B) then A ⊆ B.
Proof: Suppose x ∈ A. Then {x} ⊆ A so {x} ∈ P(A). Since P(A) ⊆ P(B), we know {x} ∈ P(B).
This means {x} ⊆ B so x ∈ B.

3. Prove A = B if and only if P(A) = P(B).

4. Prove that if A ∈ P(B) and B ∈ P(C) then A ∈ P(C)

5. Prove that A ∈ P(A).

6. Prove that ∅ ∈ P(A).

7. Prove that A× ∅ = ∅.

8. Prove that A×B = ∅ if and only if A = ∅ or B = ∅.
Proof: First suppose A = ∅ or B = ∅. If (a, b) ∈ A× B then x ∈ A and x ∈ B, which contradicts one
of our two assumptions.

For the other direction we take the contrapositive and prove “If A 6= ∅ and B 6= ∅ then A × B 6= ∅.”
Assume A 6= ∅ and B 6= ∅, so there is some a ∈ A and some b ∈ B. Then (a, b) ∈ A× B which proves
A×B is nonempty.

9. Prove that if A ⊆ B then A× C = B × C.

10. Prove that if A ⊆ B and A ⊆ C then A×A ⊆ B × C.

11. Prove that if A ⊆ C and B ⊆ C then A×B ⊆ C × C.

12. Prove that if A ⊆ C and B ⊆ D then A×B ⊆ C ×D.

Proof: Suppose A ⊆ C and B ⊆ D and (x, y) ∈ A×B. Then we know x ∈ A and y ∈ B. Since x ∈ A
and A ⊆ C, we know x ∈ C. Since y ∈ B and B ⊆ D, we know y ∈ D. As x ∈ C and y ∈ D we know
(x, y) ∈ C ×D.
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4.3 Proofs with Unions and Intersections

Prove the following statements for any sets A,B,C and D.

1. Prove A ∩ ∅ = ∅.
Proof: If x ∈ A ∩ ∅ then x ∈ A and x ∈ ∅. But x ∈ ∅ is a contradiction.

2. Prove A ∪ ∅ = A.

3. Prove A ∩B ⊆ A.

4. Prove A ⊆ A ∪B.
Proof: Suppose x ∈ A. Then x ∈ A or x ∈ B so x ∈ A ∪B.

5. Prove A ∩B ⊆ A ∪B.

6. Prove A ∩A = A.

Proof: If x ∈ A ∩A then x ∈ A and x ∈ A. Thus x ∈ A so A ∩A ⊆ A.
If x ∈ A then (x ∈ A and x ∈ A) so x ∈ A ∩A. This shows A ⊆ A ∩A.
Proof: (Alternate Style) x ∈ A iff

x ∈ A and x ∈ A. iff

x ∈ A ∩A.

7. Prove A ∪A = A.

8. A ∩ (B ∩ C) = (A ∩B) ∩ C.

9. A ∪ (B ∪ C) = (A ∪B) ∪ C.
Proof: x ∈ A ∪ (B ∪ C) iff

x ∈ A or x ∈ B ∪ C iff

x ∈ A or x ∈ B or x ∈ C iff

x ∈ A ∪B or x ∈ C iff

x ∈ (A ∪B) ∪ C.

10. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

Proof: x ∈ A ∪ (B ∩ C) iff

x ∈ A or x ∈ B ∩ C iff

x ∈ A or (x ∈ B and x ∈ C) iff

(x ∈ A or B) and (x ∈ A or C) iff

x ∈ A ∪B and x ∈ A ∪ C iff

x ∈ (A ∪B) ∩ (A ∪ C).

11. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).



4.3. PROOFS WITH UNIONS AND INTERSECTIONS 87

12. A ⊆ B iff A ∪B = B.

Proof: We must show two parts.

(If A ⊆ B then A∪B = B.) Assume A ⊆ B and we must show A∪B ⊆ B and B ⊆ A∪B. The second
statement is proved earlier in these exercises for general A and B so we only must show A ∪ B ⊆ B.
Suppose x ∈ A ∪B, then x ∈ A or x ∈ B. Since A ⊆ B we have x ∈ B or x ∈ B which implies x ∈ B.
(If A∪B = B then A ⊆ B.) Assume A∪B = B and x ∈ A. Since x ∈ A we know x ∈ A or x ∈ B and
thus x ∈ A ∪B. As A ∪B equals B, we know x ∈ B.

13. A ⊆ B iff A ∩B = A.

14. If B ⊆ C then A ∩B ⊆ A ∩ C.
Proof: Suppose B ⊆ C and x ∈ A ∩B. Then x ∈ A and x ∈ B. As x ∈ B and B ⊆ C we know x ∈ C,
therefore we know x ∈ Aandx ∈ C. This means x ∈ A ∩ C.

15. If B ⊆ C then A ∪B ⊆ A ∪ C.

16. If A ⊆ C and B ⊆ C then A ∪B ⊆ C.
Proof: Assume A ⊆ C and B ⊆ C and that x ∈ A ∪B. We know x ∈ A or x ∈ B. If x ∈ A then since
A ⊆ C we know x ∈ C. If x ∈ B then since B ⊆ C we also know x ∈ C.

17. If A ⊆ B and A ⊆ C then A ⊆ B ∩ C.

18. (A ∪B) ∩ C ⊆ A ∪ (B ∩ C).

19. If A ⊆ C and B ⊆ D then A ∪B ⊆ C ∪D.

20. If A ⊆ C and B ⊆ D then A ∩B ⊆ C ∩D.

21. A ⊆ B ∩ C iff A ⊆ B and A ⊆ C.

22. A ∪B ⊆ C iff A ⊆ C and B ⊆ C.
Proof: (A ∪ B ⊆ C ⇒ A ⊆ C and B ⊆ C.) Suppose A ∪ B ⊆ C. If x ∈ A then x ∈ A or x ∈ B so
x ∈ A ∪ B. This is a subset of C so x ∈ C. If x ∈ B then x ∈ A or x ∈ B so we also get x ∈ A ∪ B.
Again, since A ∪B ⊂ C we get x ∈ C.
(A ⊆ C and B ⊆ C ⇒ A∪B ⊆ C.) Assume A ⊆ C and B ⊆ C and suppose x ∈ A∪B. Then x ∈ A or
x ∈ B. If x ∈ A then as A ⊆ C we have x ∈ C. If x ∈ B then since B ⊆ C we have x ∈ C. Either way
x ∈ C.

23. If A ⊆ B ∪ C and A ∩B = ∅, then A ⊆ C.
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4.4 Proofs with Setminus and Compliments

Prove the following statements for any sets A,B,C and D.

1. Prove A− ∅ ⊆ A.
Proof: Suppose x ∈ A− ∅. Then x ∈ A and x /∈ ∅ so x ∈ A.

2. Prove A ⊆ A− ∅.
Proof: Suppose x ∈ A. Then x ∈ A and x /∈ ∅ so x ∈ A− ∅.

3. Prove (A−B) ∩ C = (A ∩ C)−B.

4. Prove A− (A−B) = A ∩B.

5. Prove that (A−B) ∩B = ∅.

6. Prove that (A−B) ∩ (A ∩B) = ∅.
Note: Recall to prove a set equals the empty set, assume the set contains an element and try to reach
a contradiction.

Proof: Suppose x ∈ (A−B)∩(A∩B). Thus x ∈ A−B meaning x ∈ A and x /∈ B. But x is also in A∩B
so x is in A and x ∈ B. Since x can’t both be in B and not in B we have reached a contradiction.

7. Prove (A ∪B)− (A ∩B) = (A−B) ∪ (B −A).

8. Prove (A−B)− C = (A− C)− (B − C).

9. Prove if A ⊆ B then A− C ⊆ B − C.

10. Prove A− (B ∩ C) = (A−B) ∪ (A− C).

11. Prove A− (B ∪ C) = (A−B) ∩ (A− C).

12. Prove (A ∪B)− C = (A− C) ∪ (B − C).

13. Prove (A ∩B)− C = (A− C) ∩ (B − C).

Proof: Suppose x ∈ (A ∩B)− C. Then x ∈ A ∩B and x /∈ C, which means x ∈ A, x ∈ B and x /∈ C.
This means x ∈ A and x /∈ C so x ∈ A − C. It also means x ∈ B and x /∈ C so x ∈ B − C. Since
x ∈ A− C and x ∈ B − C we know x ∈ (A− C) ∩ (B − C).

Now suppose x ∈ (A − C) ∩ (B − C). Thus we know x ∈ A − C and x ∈ B − C. This means x ∈ A,
x /∈ C, x ∈ B and x /∈ C. This tells us x ∈ A ∩B and x /∈ C so x ∈ (A ∩B)− C.
Proof: (Alternate Proof) x ∈ (A ∩B)− C iff

x ∈ (A ∩B) and x /∈ C iff

x ∈ A and x ∈ B and x /∈ C iff

(x ∈ A and x /∈ C) and (x ∈ B and x /∈ C) iff

x ∈ A− C and x ∈ B − C iff

x ∈ (A− C) ∩ (B − C).
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14. Prove that if A ⊆ B and C ⊆ D then C −B ⊆ D −A.
Proof: Assume A ⊆ B, C ⊆ D and x ∈ C − B. Then x ∈ C and x /∈ B. Since x ∈ C and C ⊆ D we
know x ∈ D. Since A ⊆ B and x /∈ B we know x /∈ A. Thus we have shown x ∈ D and x /∈ A which
means x ∈ D −A.

15. Prove that (AC)C = A

Proof: x ∈ (AC)C iff

x /∈ AC iff

x ∈ A.

16. A ∩AC = ∅
Proof: Suppose x ∈ A ∩AC . Then x ∈ A and x ∈ AC , so x ∈ A and x /∈ A, a contradiction.

17. Prove (A ∪B)C = AC ∩BC .
Proof: x ∈ (A ∪B)C iff

x /∈ (A ∪B) iff

x /∈ (A and B) iff

x /∈ A or x /∈ B iff

x ⊆ AC or x ⊆ BC .

18. Prove (A ∩B)C = AC ∪BC .

19. Prove that (A−B)C = AC ∪B.

20. Prove that A−B = A ∩BC .

21. Prove that A−B = BC −AC .
Proof: x ∈ BC −AC iff

x ∈ BC and x /∈ AC iff

x /∈ B and x ∈ A iff

x ∈ A and x /∈ B iff

x ∈ A−B.
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4.5 Proofs with Combinations of Set Operations

These problems not only involve Power Sets and Cartesian Products but also mix them together with all
other set operations from these sheets. Prove the following statements are true for all sets A,B,C and D.

1. P(A) ∪ P(B) ⊆ P(A ∪B).

2. P(A ∩B) = P(A) ∩ P(B).

3. If A ∩B = ∅ then P(A) ∩ P(B) = {∅}.
Proof: To show {∅} ⊆ P(A) ∩ P(B), just assume x ∈ {∅}. Then x = ∅ so x ⊆ A and x ⊆ B. Then
x ∈ P(A) and x ∈ P(B) so x ∈ P(A) ∩ P(B).

Now suppose x ∈ P(A) ∩ P(B). Since x ∈ P(A) and x ∈ P(B) we know x ⊆ A and x ⊆ B. Now
suppose y ∈ x. Since y ∈ x and x ⊆ A we know y ∈ A. Similarly, we know y ∈ x and x ⊆ B so y ∈ B.
Thus y ∈ A ∩ B which is a contradiction. This means x has no elements . Thus x = ∅ so x ∈ {∅},
which completes the proof.

4. A× (B ∪ C) = (A×B) ∪ (A× C).

5. A× (B ∩ C) = (A×B) ∩ (A× C).

6. A× (B − C) = (A×B)− (A× C).

7. (A×B) ∪ (C ×D) ⊆ (A ∪ C)× (B ∪D).

Proof: Suppose (x, y) ∈ (A × B) ∪ (C × D). Then (x, y) ∈ A × B or (x, y) ∈ C × D. Thus (x ∈ A
and y ∈ B) or (x ∈ C and y ∈ D). We then know x ∈ A or x ∈ C. Similarly y ∈ B or y ∈ D. Thus
x ∈ A ∪ C and y ∈ B ∪D. This means (x, y) ∈ (A ∪ C)× (B ∪D).

8. (A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D).

9. If A 6= ∅ then A×B ⊆ A× C iff B ⊆ C.

10. If B 6= ∅ and A×B ⊆ B × C then A ⊆ C.
Proof: Suppose B 6= ∅, A × B ⊆ C × B, and x ∈ A. Since B is not empty it contains some elements.
Pick one and call it b. Since x ∈ A and b ∈ B we know (x, b) ∈ A × B. As A × B ⊆ B × C we know
(x, b) ∈ C ×B which implies x ∈ C and b ∈ B. As we have shown x ∈ C we are done.
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Relations

5.1 Relations

1. Write out the elements of the following relations on A = {1, 2, 3, 4} and state the cardinality of R. Find
Dom(R) and Ran(R).

(a) R = {(x, x) ∈ A × A}. [Answer: R = {(1, 1), (2, 2), (3, 3), (4, 4) }. |R| = 4. Dom(R) = A and
Ran(R) = A.]

(b) R = {(x, y) ∈ A×A : x = 1}. [Answer: R = {(1, 2), (1, 2), (1, 3), (1, 4) }. |R| = 4. Dom(R) = {1}
and Ran(R) = A.]

(c) R = {(x, y) ∈ A × A : x < y}. [Answer: R = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}. |R| = 6.
Dom(R) = {1, 2, 3} and Ran(R) = {2, 3, 4}.]

(d) R = {(x, y) ∈ A×A : x 6= y}. [Answer: R = {(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2),
(3, 4), (4, 1), (4, 2), (4, 3) }. |R| = 12. Dom(R) = A and Ran(R) = A.]

(e) R = {(x, y) ∈ A×A : x ≤ y}. [Answer: R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3),
(3, 4), (4, 4)}. |R| = 10. Dom(R) = A and Ran(R) = A.]

(f) R = {(x, y) ∈ A×A : y−x = 1}. [Answer: R = {(1, 2), (2, 3), (3, 4)}. |R| = 3. Dom(R) = {1, 2, 3}
and Ran(R) = {2, 3, 4}.]

(g) R = {(x, y) ∈ A×A : |y−x| = 1}. [Answer: R = {(1, 2), (2, 1), (2, 3), (3, 2), (4, 3), (3, 4)}. |R| = 6.
Dom(R) = A and Ran(R) = A.]

(h) R = {(x, y) ∈ A × A : y − x = 2}. [Answer: R = {(1, 3), (2, 4)}. |R| = 2. Dom(R) = {1, 2} and
Ran(R) = {3, 4}.]

(i) R = {(x, y) ∈ A×A : |y−x| = 2}. [Answer: R = {(1, 3), (3, 1), (2, 4), (4, 2)}. |R| = 4. Dom(R) = A
and Ran(R) = A.]

(j) R = {(x, y) ∈ A×A : |y − x| = 4}. [Answer: R = ∅. |R| = 0. Dom(R) = ∅ and Ran(R) = ∅.]
(k) R = {(x, y) ∈ A × A : x + y ∈ E}. [Answer: R = {(1, 1), (1, 3), (2, 2), (2, 4), (3, 1), (3, 3),

(4, 2), (4, 4)}. |R| = 8. Dom(R) = A and Ran(R) = A.]

(l) R = {(x, y) ∈ A × A : x + y /∈ E}. [Answer: R = {(1, 2), (2, 1), (1, 4), (4, 1), (2, 3), (3, 2),
(3, 4), (4, 3)}. |R| = 8. Dom(R) = A and Ran(R) = A.]
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(m) R = {(x, y) ∈ A × A : (x ∈ E) ∧ (y /∈ E)}. [Answer: R = {(2, 1), (2, 3), (4, 1), (4, 3)}. |R| = 4.
Dom(R) = {2, 4} and Ran(R) = {1, 3}.]

(n) R = {(x, y) ∈ A × A : (x ∈ E) ∨ (y /∈ E)}. [Answer: R = {(1, 1), (1, 3), (2, 1), (2, 2), (2, 3), (2, 4),
(3, 1), (3, 3), (4, 1), (4, 2), (4, 3), (4, 4)}. |R| = 12. Dom(R) = A and Ran(R) = A.]

(o) R = {(x, y) ∈ A× A : (x ∈ E)⇔ (y /∈ E)}. [Answer: R = {(1, 2), (1, 4), (2, 1), (2, 3), (3, 2), (3, 4),
(4, 1), (4, 3)}. |R| = 8. Dom(R) = A and Ran(R) = A.]

(p) R = {(x, y) ∈ A×A : x+y is prime.}. [Answer: R = {(1, 1), (1, 2), (2, 1), (1, 4), (4, 1), (2, 3), (3, 2), (3, 4), (4, 3)}. |R| =
9. Dom(R) = A and Ran(R) = A.]

(q) R = {(x, y) ∈ A×A : xy is prime.}. [Answer: R = {(1, 2), (2, 1), (1, 3), (3, 1)}. |R| = 4. Dom(R) =
{1, 2, 3} and Ran(R) = {1, 2, 3}.]

(r) R = {(x, y) ∈ A × A : y − x is prime.}. [Answer: R = {(1, 3), (2, 4), (1, 4)}. |R| = 3. Dom(R) =
{1, 2} and Ran(R) = {3, 4}.]

(s) R = {(x, y) ∈ A × A : xy is prime.}. [Answer: R = {(2, 1), (3, 1)}. |R| = 2. Dom(R) = {2, 3} and
Ran(R) = {1}.]

(t) R = {(x, y) ∈ A × A : x | y}. [Answer: R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3),
(4, 4)}. |R| = 8. Dom(R) = A and Ran(R) = A.]

(u) R = {(x, y) ∈ A × A : x | (y − 1)}. [Answer: R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (3, 1),
(3, 4), (4, 1)}. |R| = 9. Dom(R) = A and Ran(R) = A.]

(v) R = {(x, y) ∈ A × A : (x − 1) | y}. [Answer: R = {(2, 1), (2, 2), (2, 3), (2, 4), (3, 2), (3, 4),
(4, 3)}. |R| = 7. Dom(R) = {2, 3, 4} and Ran(R) = A.]

(w) R = {(x, y) ∈ A×A : 5 | x+y}. [Answer: R = {(1, 4), (2, 3), (3, 2), (4, 1)}. |R| = 4.Dom(R) =Ran(R) =
A. ]

(x) R = {(x, y) ∈ A×A : 3 | |y − x|}. [Answer: R = {(1, 1), (1, 4), (2, 2), (3, 3), (4, 1) (4, 4)}. |R| = 6.
Dom(R) = A and Ran(R) = A.]

(y) R = {(x, y) ∈ A×A : 4 | |y−x|}. [Answer: R = {(1, 1), (2, 2), (3, 3), (4, 4)}. |R| = 4. Dom(R) = A
and Ran(R) = A.]

(z) R = {(x, y) ∈ A×A : xy < 10}. [Answer: R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1),
(3, 2), (4, 1)}. |R| = 10. Dom(R) = A and Ran(R) = A.]

2. Write out the elements of the following relations from A = {1, 2, 3, 4} to B = {5, 6, 7, 8} and state the
cardinality of R. Find Dom(R) and Ran(R).

(a) R = {(x, x) ∈ A×B}. [Answer: R = ∅. |R| = 0}. Dom(R) = ∅ and Ran(R) = ∅.]
(b) R = {(x, y) ∈ A× B : x = 1}. [Answer: R = {(1, 5), (1, 6), (1, 7), (1, 8)} |R| = 4}.Dom(R) = {1}

and Ran(R) = B.]

(c) R = {(x, y) ∈ A×B : x < y}. [Answer: R = A×B. |R| = 16. Dom(R) = A and Ran(R) = B.]

(d) R = {(x, y) ∈ A×B : x 6= y}. [Answer: R = A×B. |R| = 16. Dom(R) = A and Ran(R) = B.]

(e) R = {(x, y) ∈ A×B : x ≥ y}. [Answer: R = ∅. |R| = 0. Dom(R) = ∅ and Ran(R) = ∅.]
(f) R = {(x, y) ∈ A × B : x + y ∈ E}. [Answer: R = {(1, 5), (1, 7), (2, 6), (2, 8), (3, 5), (3, 7), (4, 6),

(4, 8)}. |R| = 8. Dom(R) = A and Ran(R) = B.]
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(g) R = {(x, y) ∈ A × B : x + y /∈ E}. [Answer: R = {(1, 6), (2, 5), (1, 8), (4, 5), (2, 7), (3, 6),
(3, 8), (4, 7)}. |R| = 8. Dom(R) = A and Ran(R) = B.]

(h) R = {(x, y) ∈ A × B : x + y is prime.}. [Answer: R = {(1, 6), (2, 5), (3, 8), (4, 7)}. |R| = 4.
Dom(R) = A and Ran(R) = B.]

(i) R = {(x, y) ∈ A × B : xy is prime.}. [Answer: R = {(1, 5), (1, 7)}. |R| = 2. Dom(R) = {1} and
Ran(R) = {5, 7}.]

(j) R = {(x, y) ∈ A × B : y − x is prime.}. [Answer: R = {(1, 6), (1, 8), (2, 5), (2, 7), (3, 5), (3, 6),
(3, 8), (4, 7)}. |R| = 8. Dom(R) = A and Ran(R) = B.]

(k) R = {(x, y) ∈ A × B : x | y}. [Answer: R = {(1, 5), (1, 6), (1, 7), (1, 8), (2, 6), (2, 8), (3, 6),
(4, 8), }. |R| = 8. Dom(R) = A and Ran(R) = B.]

(l) R = {(x, y) ∈ A × B : y − x = 1}. [Answer: R = {(4, 5)}. |R| = 1. Dom(R) = {4} and
Ran(R) = {5}.]

(m) R = {(x, y) ∈ A × B : |y − x| = 1}. [Answer: R = {(4, 5)}. |R| = 1. Dom(R) = {4} and
Ran(R) = {5}.]

(n) R = {(x, y) ∈ A × B : |y − x| = 2}. [Answer: R = {(3, 5), (4, 6)}. |R| = 2. Dom(R) = {3, 4} and
Ran(R) = {5, 6}.]

(o) R = {(x, y) ∈ A×B : |y−x| = 3}. [Answer: R = {(2, 5), (3, 6), (4, 7)}. |R| = 3. Dom(R) = {2, 3, 4}
and Ran(R) = {5, 6, 7}.]

(p) R = {(x, y) ∈ A×B : xy < 10}. [Answer: R = {(1, 5), (1, 6), (1, 7), (1, 8)}. |R| = 4. Dom(R) = {1}
and Ran(R) = B.]

(q) R = {(x, y) ∈ A×B : xy < 100}. [Answer: R = {(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6)}. |R| = 6.
Dom(R) = {1, 2} and Ran(R) = B.]

(r) R = {(x, y) ∈ A×B : yx < 10}. [Answer: R = {(1, 5), (1, 6), (1, 7), (1, 8)}. |R| = 4. Dom(R) = {1}
and Ran(R) = B.]

(s) R = {(x, y) ∈ A × B : yx < 100}. [Answer: R = { (1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7),
(2, 8)}. |R| = 8. Dom(R) = {1, 2} and Ran(R) = B.]

3. The following relations are on the set A = E of all even numbers. For each relation, write three elements
that are in R or explain why it is not possible to do so.

(a) R = {(x, y) ∈ A × A : x = 1}. [Answer: Not possible. As both entries must be even we cannot
find any elements that are in R.]

(b) R = {(x, y) ∈ A×A : x 6= y}. [Answer: (2, 4) ∈ R, (2, 6) ∈ R, (12, 18) ∈ R.]

(c) R = {(x, y) ∈ A×A : x+ y /∈ E}. [Answer: Not possible. The sum of two evens is always in E.]

(d) R = {(x, y) ∈ A×A : x+ y is prime.}. [Answer: (0, 2) ∈ R, (2, 0) ∈ R, (4,−2) ∈ R.]

(e) R = {(x, y) ∈ A×A : xy is prime.}. [Answer: Not possible. The product of two evens is a multiple
of four, and no multiples of four are prime.]

(f) R = {(x, y) ∈ A×A : y − x is prime.}. [Answer: (2, 4) ∈ R, (4, 6) ∈ R, (−6,−4) ∈ R.]

(g) R = {(x, y) ∈ A×A : x | y}. [Answer: (2, 4) ∈ R, (2,−4) ∈ R, (4, 248) ∈ R.]

(h) R = {(x, y) ∈ A × A : y − x = 1}. [Answer: Not possible. The difference will always be an even
number, and thus can never be one.]
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(i) R = {(x, y) ∈ A×A : y − x = 2}. [Answer: (0, 2) ∈ R, (2, 4) ∈ R, (4, 6) ∈ R.]

(j) R = {(x, y) ∈ A×A : xy < 10}. [Answer: (2, 0) ∈ R, (2,−2) ∈ R, (4,−2) ∈ R.]

4. Which of the following relations on A = N are infinite? If they are finite, state the cardinality of R.

(a) R = {(x, y) ∈ A×A : x = y}. [Answer: Infinite.]

(b) R = {(x, y) ∈ A×A : x = 1}. [Answer: Infinite.]

(c) R = {(x, y) ∈ A×A : y = x2}. [Answer: Infinite.]

(d) R = {(x, y) ∈ A×A : y2 = x2}. [Answer: Infinite.]

(e) R = {(x, y) ∈ A×A : xy = −1}. [Answer: Finite. |R| = 0.]

(f) R = {(x, y) ∈ A×A : xy = 0}. [Answer: Finite. |R| = 0.]

(g) R = {(x, y) ∈ A×A : xy = 1}. [Answer: Finite. |R| = 1.]

(h) R = {(x, y) ∈ A×A : xy = 2}. [Answer: Finite. |R| = 2.]

(i) R = {(x, y) ∈ A×A : xy = p} where p is some fixed prime number. [Answer: Finite. |R| = 2.]

(j) R = {(x, y) ∈ A×A : xy = 4}. [Answer: Finite. |R| = 3.]

(k) R = {(x, y) ∈ A×A : xy = s} where s is a prime squared. [Answer: Finite. |R| = 3.]

(l) R = {(x, y) ∈ A×A : xy = 6}. [Answer: Finite. |R| = 4.]

(m) R = {(x, y) ∈ A×A : x+ y = 1}. [Answer: Finite. |R| = 0.]

(n) R = {(x, y) ∈ A×A : x+ y = 4}. [Answer: Finite. |R| = 3.]

(o) R = {(x, y) ∈ A × A : x + y = n} where n is some fixed natural number. [Answer: Finite.
|R| = n− 1.]

(p) R = {(x, y) ∈ A×A : x2 + y2 = 1}. [Answer: Finite. |R| = 0.]

(q) R = {(x, y) ∈ A×A : x2 + y2 = 2}. [Answer: Finite. |R| = 1.]

(r) R = {(x, y) ∈ A×A : x2 + y2 = 5}. [Answer: Finite. |R| = 2.]

(s) R = {(x, y) ∈ A×A : x2 + y2 = 25}. [Answer: Finite. |R| = 2.]

(t) R = {(x, y) ∈ A×A : x+ y is prime }. [Answer: Infinite. ]

(u) R = {(x, y) ∈ A×A : xy = x}. [Answer: Infinite. ]

(v) R = {(x, y) ∈ A×A : x2y = x}. [Answer: Finite. |R| = 1.]

5. Which of the above answers change when N is replaced with Z? [Answer: e, f, g, h, i, j, k, l,m,m,
n, o, p, r, s, v all change.]
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5.2 Relations and Cardinality

1. How many relations R are there on the set A = {1, 2} when:

(a) There are no restrictions? [Answer: 2|A|·|A| = 16.]

(b) |R| = 0? [Answer: 1. R = ∅.]
(c) |R| = 1? [Answer: 4. Here R must be any subset of A × A of size one. Thus R = {(1, 1)}, R =
{(1, 2)}, R = {(2, 1)}, and R = {(2, 2)}.]

(d) |R| = 2? [Answer: 6. R = {(1, 1), (1, 2)}, R = {(1, 1), (2, 1)}, R = {(1, 1), (2, 2)}, R = {(1, 2), (2, 1)}, R =
{(1, 2), (2, 2)}, and R = {(2, 1), (2, 2)}.]

(e) |R| = 3? [Answer: 4. R = {(1, 1), (1, 2), (2, 1)}, R = {(1, 1), (1, 2), (2, 2)}, R = {(1, 1), (2, 1), (2, 2)},
and R = {(1, 2), (2, 1), (2, 2)}.]

(f) |R| = 4? [Answer: 1. R = {(1, 1), (1, 2), (2, 1), (2, 2)}.]
(g) (1, 2) ∈ R? [Answer: 8]

(h) (1, 2) /∈ R? [Answer: 8]

(i) (1, 1) and (2, 2) are both in R? [Answer: 4]

(j) (1, 1) ∈ R and (2, 2) /∈ R. [Answer: 4]

2. How many relations R are there on the set A = ∅? [Answer: The only subset of ∅ × ∅ is the empty set
itself. Thus ∅ is the only relation and the answer is one.]

3. How many relations R are there on the set A = {∅} when:

(a) There are no restrictions? [Answer: 2|A|·|A| = 2.]

(b) |R| = 0? [Answer: 1. R = ∅.]
(c) |R| = 1? [Answer: 1. R = {(∅, ∅)}.]

4. How many relations R are there on the set A = {1, 2, 3} when:

(a) There are no restrictions? [Answer: 2|A|·|A| = 512.]

(b) (1, 2) ∈ R? [Answer: Any element will appear in half of the subsets of |A| · |A| so the answer must
be 256]

(c) (1, 2) /∈ R? [Answer: 256]

(d) |R| = 0? [Answer: 1. R = ∅.]
(e) |R| = 1? [Answer: 9. Here R must be any subset of A × A of size one. Thus R can contain

any one of nine elements. R = {(1, 1)}, R = {(1, 2)}, R = {(1, 3)}, R = {(2, 1)}, R = {(2, 2)}, R =
{(2, 3)}, R = {(3, 1)}, R = {(3, 2)} and R = {(3, 3)}.]

(f) |R| = 8? [Answer: 9. These are the relations that have all of A×A except for one element. There
are nine different elements we could skip, so the answer is nine.]

(g) |R| = 9? [Answer: 1. R contains nine elements and is a subset of A×A which also contains nine
elements. Therefore it must be all of A×A. ]
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5. How many relations R are there from the set A = {1, 2} to the set B = {3} when:

(a) There are no restrictions? [Answer: 2|A|·|B| = 4.]

(b) |R| = 0? [Answer: 1. R = ∅.]
(c) |R| = 1? [Answer: 2. Here R must be any subset of A × B of size one. Thus R = {(1, 3)}, and

R = {(2, 3)}.]
(d) |R| = 2? [Answer: 1. R = {(1, 3), (2, 3)}.]
(e) (1, 3) ∈ R? [Answer: 2.]

(f) (1, 3) /∈ R? [Answer: 2]

6. How many relations R are there from the set A = {1, 2} to the set B = {3, 4} when:

(a) There are no restrictions? [Answer: 2|A|·|B| = 16.]

(b) |R| = 0? [Answer: 1. R = ∅.]
(c) |R| = 1? [Answer: 4. Here R must be any subset of A × B of size one. Thus R = {(1, 3)}, R =
{(1, 4)}, R = {(2, 3)}, and R = {(2, 4)}.]

(d) |R| = 2? [Answer: 6. R = {(1, 3), (1, 4)}, R = {(1, 3), (2, 3)}, R = {(1, 3), (2, 4)}, R = {(1, 4), (2, 3)}, R =
{(1, 4), (2, 4)}, and R = {(2, 3), (2, 4)}.]

(e) |R| = 3? [Answer: 4. R = {(1, 3), (1, 4), (2, 3)}, R = {(1, 3), (1, 4), (2, 4)}, R = {(1, 3), (2, 3), (2, 4)},
and R = {(1, 4), (2, 3), (2, 4)}.]

(f) |R| = 4? [Answer: 1. R = {(1, 3), (1, 4), (2, 3), (2, 4)}.]
(g) (1, 2) ∈ R? [Answer: 0. Since (1, 2) /∈ A×B there are no relations containing (1, 2) here.]

(h) (1, 3) ∈ R? [Answer: 8.]

(i) (1, 3) /∈ R? [Answer: 8]

7. How many relations R are there from the set A = {1, 2} to the set B = ∅? [Answer: 1. Just the empty
set.]

8. How many relations R are there from the set A = ∅ to the set B = {3, 4}? [Answer: 1. Just the empty
set.]
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5.3 Relations and Digraphs

1. Draw a directed graph for each of the given relations on A = {1, 2, 3}.

(a) R = A×A,S = ∅, T = {(1, 1), (2, 2)}, U = {(1, 1), (1, 2), (2, 1), (2, 2)}, V = {(1, 2), (2, 3), (3, 1)}.
Answer:

(b) R = {(x, x) ∈ A × A}, S = {(x, y) ∈ A × A : x = 1}, T = {(x, y) ∈ A × A : x < y}, U = {(x, y) ∈
A×A : x 6= y}, V = {(x, y) ∈ A×A : x ≤ y}.
Answer:

(c) R = {(x, y) ∈ A×A : y−x = 1}, S = {(x, y) ∈ A×A : |y−x| = 1}, T = {(x, y) ∈ A×A : y−x =
2}, U = {(x, y) ∈ A×A : |y − x| = 2}, V = {(x, y) ∈ A×A : |y − x| = 3}.
Answer:

(d) R = {(x, y) ∈ A × A : 1 | y − x}, S = {(x, y) ∈ A × A : 2 | y − x}, T = {(x, y) ∈ A × A :
3 | y − x}, U = {(x, y) ∈ A×A : 4 | x+ y}, V = {(x, y) ∈ A×A : 5 | x+ y}.
Answer:



98 CHAPTER 5. RELATIONS

2. The following relations are given by a digraph. Write out the elements of each of these relations.

(a) The R,S, T, U and V below.

[Answer: R = {(1, 3), (3, 1), (3, 2)}, S = {(1, 2), (2, 1)}, T = {(1, 3), (1, 2), (2, 3)}, U = {(3, 1), (2, 1), (2, 3)},
V = {(1, 2), (2, 3), (3, 2), (3, 1)}.

(b) The R,S, T, U and V below.

[Answer: R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)}, S = {(1, 1), (1, 3), (3, 1), (2, 2), (2, 3), (3, 2)}, T =
{(2, 2), (3, 3)}, U = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3)}, V = {(1, 1), (1, 2)}.

3. Draw a directed graph for each of the given relations from A = {1, 2, 3} to B = {4, 5, 6}

(a) R = {(x, x) ∈ A× B}, S = {(x, y) ∈ A× B : x = 2}, T = {(x, y) ∈ A× B : y = 4}, U = {(x, y) ∈
A×B : y /∈ E}, V = {(x, y) ∈ A×B : x /∈ E}.
Answer:
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(b) R = {(x, y) ∈ A×B : x < y}, S = {(x, y) ∈ A×B : x > y}, T = {(x, y) ∈ A×B : x+ y ∈ E}, U =
{(x, y) ∈ A×B : x+ y is prime }, V = {(x, y) ∈ A×B : y − x is prime}.
Answer:

(c) R = {(x, y) ∈ A × B : 3 | (y − x)}, S = {(x, y) ∈ A × B : 3 | (x − y)}, T = {(x, y) ∈ A × B :
4 | (y − x)}, U = {(x, y) ∈ A×B : xy > 100}, V = {(x, y) ∈ A×B : yx > 100}.
Answer:
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5.4 Inverses and Compositions of Relations

1. Find R−1, dom(R−1), ran(R−1), R ◦ R, dom(R ◦ R), and ran(R ◦ R), for the following relations R on
the set A = {1, 2, 3, 4, 5}.

(a) R = {(x, y) ∈ A × A : x = y}. [Answer: R−1 = R ◦ R = R, dom(R−1) =ran(R−1) =dom(R ◦
R) =ran(R ◦R) = A.]

(b) R = {(x, y) ∈ A× A : x = 1}. [Answer: R−1 = {(x, y) ∈ A× A : y = 1}, R ◦ R = R. ran(R−1) =
dom(R ◦R) = {1}, dom(R−1) = ran(R ◦R) = A. ]

(c) R = {(x, y) ∈ A × A : x < y}. [Answer: R−1 = {(x, y) ∈ A × A : y < x}, dom(R) = {1, 2, 3, 4},
dom(R ◦R) = {1, 2, 3}, ran(R) = {2, 3, 4, 5}, ran(R ◦R) = {3, 4, 5}. R ◦R = {(1, 3), (2, 4), (3, 5),
(1, 4), (2, 5), (1, 5)}. ]

(d) R = {(x, y) ∈ A×A : x > y}.
(e) R = {(x, y) ∈ A×A : x 6= y}. [Answer: R−1 = R,R◦R = A×A, dom(R−1) =ran(R−1) =dom(R◦

R) =ran(R ◦R) = A.]

(f) R = {(x, y) ∈ A × A : x ≤ y}. [Answer: R−1 = {(x, y) ∈ A × A : x ≥ y}, R ◦ R = R,
dom(R−1) =ran(R−1) =dom(R ◦R) =ran(R ◦R) = A, ]

(g) R = {(x, y) ∈ A× A : x+ y ∈ E}. [Answer: R−1 = R ◦ R = R, dom(R−1) =ran(R−1) =dom(R ◦
R) =ran(R ◦R) = A.]

(h) R = {(x, y) ∈ A × A : x + y /∈ E}. [Answer: R−1 = R,R ◦ R = {(x, y) ∈ A × A : x + y ∈ E},
dom(R−1) =ran(R−1) =dom(R ◦R) =ran(R ◦R) = A, ]

(i) R = {(x, y) ∈ A×A : x+ y is prime.}.
(j) R = {(x, y) ∈ A × A : xy is prime.}. [Answer: R−1 = R. R ◦ R = {(1, 1), (2, 2), (3, 3), (5, 5),

(5, 2), (2, 5) (3, 2), (2, 3), (3, 5), (5, 3)}, dom(R−1) =ran(R−1) =dom(R◦R) =ran(R◦R) = {1, 2, 3, 5}.]
(k) R = {(x, y) ∈ A×A : y − x is prime.}.
(l) R = {(x, y) ∈ A×A : x | y}.

(m) R = {(x, y) ∈ A×A : y − x = 1}.
(n) R = {(x, y) ∈ A×A : |y − x| = 1}.
(o) R = {(x, y) ∈ A×A : y − x = 2}. [Answer: R−1 = {(x, y) ∈ A×A : x− y = 2}, R ◦R = {(1, 5)},

dom(R−1) = {3, 4, 5}, ran(R−1) = {1, 2, 3}, dom(R ◦R) = {1}, ran(R ◦R) = {5}. ]

(p) R = {(x, y) ∈ A×A : x− y = 2}.
(q) R = {(x, y) ∈ A × A : |y − x| = 3}. [Answer: R−1 = R,R ◦ R = {(1, 1), (2, 2), (4, 4), (5, 5)},

ran(R−1) = {1, 2, 4, 5} = dom(R−1) = dom(R ◦R) = ran(R ◦R). ]

(r) R = {(x, y) ∈ A×A : |y − x| = 4}.
(s) R = {(x, y) ∈ A×A : y = x2}.
(t) R = {(x, y) ∈ A×A : x = y2}.
(u) R = {(x, y) ∈ A × A : xy = 4}. [Answer: R−1 = R,R ◦ R = {(1, 1), (2, 2), (4, 4)}, ran(R−1) =
{1, 2, 4} = dom(R−1) = dom(R ◦R) = ran(R ◦R). ]

2. For each of the following relations find the inverse and composition of each with itself.
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(a) R,S, T, U and V are as follows:

Answer:

(b) R,S, T, U and V are as follows:

Answer:
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(c) R,S, T, U and V are as follows:

Answer:

3. Let R be a relation from the set B = {4, 5, 6} to C = {7, 8, 9} and S be a relation from the set
A = {1, 2, 3} to the set B. Find R ◦ S, dom R ◦ S and ran R ◦ S in the following situations.

(a) R = {(4, 7), (5, 8), (6, 9)}, S = {(1, 4), (2, 5), (3, 6)}. [Answer: R◦S = {(1, 7), (2, 8), (3, 9)}, dom(R◦
S) = A, ran(R ◦ S) = C.]

(b) R = {(4, 7), (5, 8)}, S = {(2, 5), (3, 6)}. [Answer: R ◦S = {(2, 8)}, dom(R ◦S) = {2}, ran(R ◦S) =
{8}.]

(c) R = {(4, 7), (5, 8)}, S = {(2, 5), (3, 4)}. [Answer: R ◦ S = {(2, 8), (3, 7)}, dom(R ◦ S) = {2, 3},
ran(R ◦ S) = {7, 8}.]

(d) R = {(4, 7), (5, 7), (6, 7)}, S = {(1, 4), (2, 5), (3, 4)}. [Answer: R◦S = {(1, 7), (2, 7), (3, 7)}, dom(R◦
S) = A, ran(R ◦ S) = {7}.]

(e) R = {(5, 7), (5, 8), (5, 9)}, S = {(1, 4), (2, 5), (3, 4)}. [Answer: R◦S = {(2, 7), (2, 8), (2, 9)}, dom(R◦
S) = {2}, ran(R ◦ S) = C.]



104 CHAPTER 5. RELATIONS

(f) R = {(5, 7), (5, 8), (5, 9), (6, 7), (6, 8), (6, 9)}, S = {(1, 4), (2, 4), (3, 4)}. [Answer: R◦S = ∅, dom(R◦
S) = ∅, ran(R ◦ S) = ∅.]

(g) R = {(4, 7), (4, 8), (4, 9), (6, 7), (6, 8), (6, 9)}, S = {(1, 4), (2, 4), (3, 4), (1, 6), (2, 6), (3, 6)}. [Answer:
R ◦ S = A× C, dom(R ◦ S) = A, ran(R ◦ S) = C.]

(h) R = {(4, 7), (4, 8), (4, 9)}, S = {(1, 4), (2, 4), (3, 4)}. [Answer: R ◦ S = A × C, dom(R ◦ S) = A,
ran(R ◦ S) = C.]

(i) R = {(4, 7), (4, 8), (4, 9), (5, 7), (5, 8), (6, 7), (6, 8), (6, 9)}, S = {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5),
(2, 6), (3, 5)}. [Answer: R◦S = {(1, 7), (1, 8), (1, 9), (2, 7), (2, 8), (2, 9), (3, 7), (3, 8)}, dom(R◦S) =
A, ran(R ◦ S) = C.]

(j) R = {(4, 8), (5, 9)}, S = {(1, 5), (2, 6)}. [Answer: R◦S = {(1, 9)}, dom(R◦S) = {1}, ran(R◦S) =
{9}.]

(k) R = {(4, 8), (5, 9), (6, 7)}, S = {(1, 5), (2, 6), (3, 4)}. [Answer: R ◦ S = {(1, 9), (2, 7), (3, 8)},
dom(R ◦ S) = A, ran(R ◦ S) = C.]
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5.5 Properties of Relations and Constructions

1. Find a relation on the set {1, 2} which has the following properties. There will generally be multiple
answers.

(a) R is reflexive, symmetric, and transitive. [Answer: R = {(1, 1), (2, 2)}.]
(b) R is reflexive and transitive, but not symmetric. [Answer: R = {(1, 1), (1, 2), (2, 2)}.]
(c) R is not reflexive, but is symmetric and transitive. [Answer: R = ∅.]
(d) R is not reflexive or transitive, but is symmetric. [Answer: R = {(1, 2), (2, 1)}.]
(e) R is not reflexive or symmetric, but is transitive. [Answer: R = {(1, 2)}.]

2. Find a relation on the set {1, 2, 3} which has the following properties. There will generally be multiple
answers.

(a) R is reflexive, symmetric, and transitive. [Answer: R = {(1, 1), (2, 2), (3, 3)}.]
(b) R is reflexive, symmetric, and not transitive. [Answer: R = {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3)}.]
(c) R is reflexive and transitive but, not symmetric. [Answer: R = {(1, 1), (1, 2), (2, 2), (3, 3)}.]
(d) R is reflexive, but not symmetric and not transitive. [Answer: R = {(1, 1), (1, 2), (2, 2), (2, 3), (3, 3)}.]
(e) R is not reflexive, but is both symmetric and transitive. [Answer: R = ∅.]
(f) R is not reflexive, R is symmetric, and R is not transitive. [Answer: R = {(1, 2), (2, 1)}.]
(g) R is not reflexive or symmetric, but R is transitive. [Answer: R = {(1, 2)}.]
(h) R is not reflexive, not symmetric, and not transitive. [Answer: R = {(1, 2), (2, 3)}.]

3. Let R be the smallest equivalence relation on A containing the listed elements1. State whether or not
R is A×A.

(a) A = {1, 2}, (1, 2) ∈ R [Answer: R 6= A×A.]
(b) A = {1, 2, 3}, (1, 2) ∈ R [Answer: R 6= A×A.]
(c) A = {1, 2, 3}, {(1, 2), (2, 3)} ⊆ R. [Answer: R = A×A.]
(d) A = {1, 2, 3}, {(1, 2), (2, 1)} ⊆ R. [Answer: R 6= A×A.]
(e) A = {1, 2, 3, 4}, {(1, 2), (2, 3)} ⊆ R. [Answer: R 6= A×A.]
(f) A = {1, 2, 3, 4}, {(1, 2), (3, 4)} ⊆ R. [Answer: R 6= A×A.]
(g) A = {1, 2, 3, 4}, {(1, 2), (1, 4)} ⊆ R. [Answer: R 6= A×A.]
(h) A = {1, 2, 3, 4}, {(1, 2), (2, 3), (3, 4)} ⊆ R [Answer: R = A×A.]

4. How many relations R are there on the set A = {1, 2} with the following properties?

(a) R is reflexive [Answer: 4. {(1, 1), (2, 2)}, {(1, 1), (2, 2), (2, 1)}, {(1, 1), (2, 2), (2, 1)}, {(1, 1), (2, 2), (1, 2), (2, 1)}]
(b) R is not reflexive [Answer: 12. There are sixteen relations on a set with two elements and

16− 4 = 12.]

1By this we mean the relation with the fewest elements of A×A.
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(c) R is symmetric [Answer: 8. We have to include both (1, 2) and (2, 1) or neither. We can just
count the subsets of {(1, 1), (1, 2), (2, 2)} since we no longer get a choice for (2, 1) after (1, 2) has
been decided. There are eight subsets of any three element set. ]

(d) R is not symmetric [Answer: 8. 16-8=8. ]

(e) R is reflexive and not symmetric. [Answer: 2. We have to include either (1, 2) or (1, 2) but not both
or it will be symmetric. We also must include both (1, 1) and (2, 2). This leaves {(1, 1), (1, 2), (2, 2)}
and {(1, 1), (2, 1), (2, 2)} for our only choices.

(f) R is symmetric and transitive. [Answer: 5. If (1, 2) is included we would need (2, 1) to get
symmetry, and transitivity forces us to include all of A×A. This is one possibility. If (1, 2) is not
included then we can’t include (2, 1) leaving us with the four possibilities ∅, {(2, 2)}, {(1, 1)}, and
{(1, 1), (2, 2)}.

(g) R is symmetric and not transitive. [Answer: 2. We have to include either (1, 2) or (1, 2) otherwise
it will be transitive. By symmetry, we will have to include both. Then we have to choose whether
to include (1, 1) and (2, 2). If we include both or neither it is transitive, therefore we must include
exactly one. Our possibilities are {(1, 2), (2, 1), (2, 2)} and {(1, 1), (1, 2), (2, 1)}.]

(h) R is not symmetric and not transitive. [Answer: 0. We have to include either (1, 2) or (1, 2)
but not both or it will be symmetric. Regardless of whether we include (1, 1) or (2, 2) it is now
transitive so no relations meet these properties on our set.]

(i) R is reflexive and not transitive. [Answer: 0. We must include (1, 1) and (1, 2). If we add either
(1, 2) or (2, 1) it will be transitive. If we add both or neither it will still be transitive.]

5. How many distinct equivalence relations R on A = {1, 2, 3} have the following sizes?

(a) |R| = 3 [Answer: 1.]

(b) |R| = 4 [Answer: 0.]

(c) |R| = 5 [Answer: 3.]

(d) |R| = 6 [Answer: 0.]

(e) |R| = 7 [Answer: 0.]

(f) |R| = 9 [Answer: 1.]
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5.6 Proofs with Properties of Relations

For each of the following relations state whether they are reflexive, symmetric, and transitive2. Support each
answer with either a proof or a counterexample.

1. The relation R on N given by x ∼ y iff x = 2y.

2. The relation R on N given by x ∼ y iff 2x ≤ y.

Proof:

Reflexivity: It is not reflexive because when a = 1, a � a so a � a.

Symmetric: If a = 1 and b = 2 then a ∼ b because 2 ≤ 2, yet b � a since four is not less than or equal
to one.

Transitive: If a ∼ b and b ∼ c then 2a ≤ b and 2b ≤ c. Thus 4a ≤ 2b ≤ c. Now since a is positive3,
2a < 4a. Thus 2a ≤ c which shows a ∼ c.

3. The relation R on N given by x ∼ y iff xy is even.

The relation is transitive but not reflexive or symmetric.

Proof:

Reflexive: It is not reflexive as (1, 1) /∈ R since 11 = 1 is not even.

Symmetric: It is not symmetric as (2, 3) ∈ R but (3, 2) /∈ R.
Transitive: It is transitive. If (x, y) ∈ R and (y, z) ∈ R then xy is even which means x is even. Thus
xz is even so (x, z) ∈ R.

4. The relation R on N given by x ∼ y iff x+ y is prime.

5. The relation R on N given by x ∼ y iff xy is prime.

6. The relation R on Z given by x ∼ y iff x+ y = 0.

7. The relation R on Z given by x ∼ y iff xy = 0.

8. The relation R on Z given by x ∼ y iff y is the successor of x. (That means y = x+ 1.)

The relation is reflexive, but not symmetric and not transitive.

Proof:

Reflexivity: Since 0 < 1 we know a < a+ 1 for any a. This means a ∼ a.

Symmetry: When a = 1 and b = 2 we have a ∼ b because b = a+ 1, but not b ∼ a.

Transitivity: When a = 1, b = 2 and c = 3 we have a ∼ b and b ∼ c but a � c because 3 6= 1 + 1.

2Keep in mind that these questions are using the “ ∼′′ notation for relations, so that a ∼ b if and only if (a, b) ∈ R. Thus
R is reflexive if a ∼ a for each a in our underlying set, which is equivalent to saying (a, a) ∈ R for each a in that set. We
know R is symmetric if (a, b) ∈ R ⇒ (b, a) ∈ R, which is equivalent to saying that a ∼ b implies b ∼ a. Finally R is transitive
if (a, b) ∈ R ∧ (b, c) ∈ R imply (a, c) ∈ R, or that a ∼ b and b ∼ c imply a ∼ c. Though the questions are phrased using one
notation, feel free to use whichever you prefer in order to solve these problems.

3Notice that this statement, fails to be true if we extend our set to the integers. It is important to pay close attention to
which set we are working over in each example.
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9. The relation R on Z given by x ∼ y iff one is a successor of the other. (That means x = y + 1 or
y = x+ 1.)

This relation is symmetric but not reflexive or transitive.

Proof:

Reflexivity: It is not reflexive as 1 is not equal to 1 + 1.

Symmetry: It is symmetric as (x, y) ∈ R implies either x = y + 1 or y = x+ 1 which implies y = x+ 1
or x = y + 1 so (y, x) ∈ R.

Transitivity: It is not transitive as x = 1, y = 2, z = 3 is a counterexample. (1, 2) ∈ R and (2, 3) ∈ R
but (1, 3) /∈ R.

10. The relation R on Z given by x ∼ y iff xy ≥ 0.

The relation is reflexive and symmetric but not transitive.

Proof:

Reflexive: It is reflexive as for any x, x · x = x2 ≥ 0.

Symmetric: It is symmetric as xy ≥ 0 implies yx ≥ 0 since xy = yx.

Transitive: It is not transitive as x = −1, y = 0, z = 1 is a counterexample. This is because −1 · 0 ≥ 0
and 0 · 1 ≥ 0.

11. The relation R on Z given by x ∼ y iff x+ y is even.

12. The relation R on Z given by x ∼ y iff xy is even.

13. The relation R on Z given by x ∼ y iff xy is odd.

The relation is not reflexive, but is both symmetric and transitive.

Proof:

Reflexive: When a = 0 we do not have a ∼ a because a2 = 0 which is not odd.

Symmetric: If a ∼ b then ab is odd. As ab = ba we know ba is odd, and therefore b ∼ a.
Transitive: Suppose a ∼ b and b ∼ c. Then we know ab and bc are both odd. We know that ab being
odd implies that a and b are odd4 Similarly we get that b and c are both odd. Thus a, b, and c are all
odd. proving that ac is odd, and thus a ∼ c.

14. The relation R on Z given by x ∼ y iff x+ y is divisible by 3.

The relation is symmetric, but neither reflexive nor transitive.

Proof:

Reflexivity: When a = 1 we fail to get 1 ∼ 1 because two is not divisible by three.

Symmetry: If a ∼ b we know three divides a + b which equals b + a. Thus three divides b + a and we
know b ∼ a.

Transitive: If a = 1, b = 2 and c = 1 we know a ∼ b and b ∼ c because three divides three. However,
a � c because three does not divide 1 + 1.

4This comes from an older proof we did. Even if we’ve forgotten this fact, taking the contrapositive allows us to do this with
a very short proof. We also proved that a product of two odd numbers was odd, which is a short direct proof that we are about
to use at the end.



5.6. PROOFS WITH PROPERTIES OF RELATIONS 109

15. The relation R on Z given by x ∼ y iff x− y is divisible by 3.

16. The relation R on Z given by x ∼ y iff the average of x and y is in Z. (Note that the average equals
1
2 (x+ y).)

The relation is reflexive, symmetric and transitive and hence is an equivalence relation.

Proof:

Reflexivity: It is reflexive as for any x, 1
2 (x+ x) = 1

22x = x ∈ Z.

Symmetry: It is symmetric as 1
2 (x+ y) = 1

2 (y + x) so (x, y) ∈ R implies (y, x) ∈ R.
Transitivity: It is transitive. Assume (x, y) and (y, z) ∈ R. Then 1

2 (x + y) = m and 1
2 (y + z) = n for

some m,n ∈ Z. Then 1
2 (x+ z) = 1

2 (x+ y+ y+ z− 2y) = 1
2 (x+ y) + 1

2 (y+ z)− 1
22y = m+n− y which

is in Z.

17. The relation R on Z given by x ∼ y iff x ≤ 2y.

The relation is not reflexive, symmetric or transitive.

Proof:

Reflexivity: When a = −1 a � a because −1 � −2.

Symmetry: When a = 1 and b = 3 we have a ∼ b but not b ∼ a because 3 � 2× 1.

Transitivity: When a = 4, b = 2 and c = 1 we know a ∼ b and b ∼ c because a ≤ 2b and b ≤ 2c. Yet
a � c because 4 � 2× 1. Thus the relation is not transitive.

18. The relation R on Z given by x ∼ y iff x < y − 2.

The relation is not reflexive or symmetric, but is transitive.

Proof:

Reflexivity: Zero is not less than 0-2, thus (0, 0) /∈ R.
Symmetry: 0 ∼ 100 but it is not true that 100 ∼ 0 since 100 is not less than 0-2.

Transitivity: Assume that a ∼ b and b ∼ c. Thus a < b− 2 and b < c− 2 so we know for certain that
a < (c− 2)− 2 = c− 4. Since a < c− 4 we know a < c− 2 and thus a ∼ c.

19. The relation R on E given by x ∼ y iff six divides y − x.

20. The relation R on E given by x ∼ y iff four divides x+ y.

21. The relation R on E given by x ∼ y iff six divides x+ y.

The relation is not reflexive or transitive, but is symmetric.

Proof:

Reflexivity: Six does not divide two plus two so (2, 2) /∈ R.
Symmetry: Suppose (a, b) ∈ R. Then six divides a + b so 6r = a + b for r ∈ Z. Then 6r also equals
b+ a, which shows that six divides b+ a and thus (b, a) ∈ R.
Transitivity: (4, 2) and (2, 10) are in R because six divides 4 + 2 and 2 + 10. However (4, 10) /∈ R
because six does not divide fourteen.

22. The relation R on E given by x ∼ y iff four divides x.
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23. The relation R on Q given by x ∼ y iff xy ∈ Z.

24. The relation R on Q given by x ∼ y iff x+ y ∈ Z.

25. The relation R on Q given by x ∼ y iff x− 2y ∈ Z.

The relation is not reflexive, not symmetric and not transitive.

Proof:

Reflexivity: If x = 1
2 then (x, x) /∈ R as 1

2 − 2 · 12 = − 1
2 which is not an integer.

Symmetry: If x = 3
2 and y = 1

4 then x ∼ y because 3
2 − 2 · 14 = 1 which is in Z. We do not have y ∼ x

however, because 1
4 − 2 · 54 = − 9

4 , which is not an integer.

Transitivity: If x = 1
2 , y = 1

4 and z = 1
8 then x ∼ y and y ∼ z. However it is not true that x ∼ z

because 1
2 − 2 · 18 = 1

4 which is not an integer.

26. The relation R on Q given by x ∼ y iff xy = 2.

The relation is symmetric but not reflexive or transitive.

Proof:

Reflexivity: It is not reflexive. For example ( 1
2 ,

1
2 ) /∈ R as 1

2 ·
1
2 6= 2

Symmetry: It is symmetric. If (x, y) ∈ R then xy = 2 so yx = 2 and (y, x) ∈ R.
Transitivity: It is not transitive. For example x = 2

3 , y = 6
2 , z = 2

3 is an example where xRy and yRz
but (x, z) /∈ R as as 2

3 ·
2
3 6= 2

27. The relation R on R given by u ∼ v iff u2 = v2.

The relation is reflexive, symmetric and transitive, and hence it is an equivalence relation.

Proof:

Reflexivity: For any real number x, we know x2 = x2 and thus x ∼ x.
Symmetry: If x ∼ y then x2 = y2, thus y2 = x2 and so y ∼ x.
Transitivity: If x ∼ y and y ∼ z then x2 = y2 and y2 = z2. Therefore x2 = y2 = z2 and x ∼ z.

28. The relation R on R given by u ∼ v iff v − u < 1.

The relation is reflexive, but not symmetric or transitive.

Proof:

Note that we can rewrite the condition as x− y < 1 iff x < 1 + y.

Reflexivity: For any real number x, we know x < 1 + x because 0 < 1. Thus x ∼ x.

Symmetry: If x = 1 and y = 100 then x < y + 1 but it is not true that y < x+ 1. Thus the relation is
not symmetric.

Transitivity: If x < y + 1 and y < z + 1 we know x < z + 1 + 1 which means x < z + 2. This doesn’t
mean that x < z + 1 though. Consider the case where x = 1, y = 1

2 , and z = 0. Then x ∼ y and y ∼ z
because 1 < 1

2 + 1 and 1
2 < 0 + 1, but one is not less than 0+1 since the two are equal. This shows the

relation is not transitive.
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29. The relation R on R given by u ∼ v iff u− v > −1.

The relation is reflexive but neither symmetric nor transitive.

Proof:

Reflexivity: For any real number x we know x− x = 0 > −1, and thus x ∼ x.

Symmetry: If x = 10 and y = 1 then u ∼ v because 10− 1 > −1, but v � u because 1− 10 = −9 which
is not bigger than −1.

Transitivity: If x = − 1
2 , y = 0 and z = 1

2 then x − y and y − z equal − 1
2 . Thus x ∼ y and y ∼ z.

However x− z = − 1
2 −

1
2 = 1, which is not stricktly less than negative one. Therefore x � z.

30. The relation R on R given by u ∼ v iff
√
u2 + v2 < 1.

31. The relation R on R given by u ∼ v iff u2 + v2 > 0.

32. The relation5 R on Z× Z given by (a, b) ∼ (c, d) iff b = d.

The relation is reflexive, symmetric and transitive and hence is an equivalence relation.

Proof:

Reflexivity: The relation is reflexive. (w, x) ∼ (w, x) for any (w, x) ∈ Z× Z because x is always equal
to x.

Symmetry: The relation is symmetric. If (w, x) ∼ (y, z) then x = z so z = x which means (y, z) ∼
(w, x).

Transitivity: The relation is transitive. Suppose (u, v) ∼ (w, x) and (w, x) ∼ (y, z) for the ordered pairs
(u, v), (w, x) and (y, z). Then we know v = x and x = z. This implies v = z so (u, v) = (y, z).

33. The relation R on Z× Z given by (a, b) ∼ (c, d) iff a+ c = 0 and b+ d = 0.

34. The relation R on Z× Z given by (a, b) ∼ (c, d) iff a+ b = 0 and c+ d = 0.

35. The relation R on Z× Z given by (a, b) ∼ (c, d) iff a+ b+ c+ d = 0.

36. The relation R on Z× Z given by (a, b) ∼ (c, d) iff a2 = c2 and b2 = d2.

The relation is Proof:

Reflexivity: (x, y) ∼ (x, y) for all (x, y) ∈ Z× Z because x2 = x2 and y2 = y2.

Symmetry: Suppose (w, x) ∼ (y, z) so w2 = y2 and x2 = z2. As y2 = w2 and z2 = x2 we know
(y, z) ∼ (w, x).

Transitivity: Suppose (u, v) ∼ (w, x) and (w, x) ∼ (y, z). Then u2 = w2 and v2 = x2 and w2 = y2 and
x2 = z2. Putting this all together tells us u2 = y2 and v2 = z2, which means (u, v) ∼ (y, z).

37. The relation R on Z× Z given by (a, b) ∼ (c, d) iff abcd = 0.

5Keep in mind that we are now considering a relation on the set Z × Z, which means this is a subset of (Z × Z) × (Z × Z).
Here (a, b) ∼ (c, d) if and only iff ((a, b), (c, d)) ∈ R.
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38. The relation R on the alphabet {a, b, · · · , z} given by α ∼ β iff there is a vowel between α and β.

The relation is symmetric but not reflexive or transitive.

Proof:

Reflexivity: It is not reflexive as (b, b) /∈ R.
Symmetry: It is symmetric. Suppose (α, β) ∈ R. Then there is a vowel between α and β so the same
vowel is in between β and α. This means (β, α) ∈ R.

Transitivity: It is not transitive because (b, f) and (f, c) are in R, but (b, c) is not.

39. The relation R on the alphabet {a, b, · · · , z} given by α ∼ β iff α is the letter before β.

40. The relation R on the alphabet {a, b, · · · , z} given by α ∼ β iff α is in the same half of the alphabet as
β. (Here note that {a, b, · · · ,m} and {n, o, · · · , z} are the two halves in question.)

41. The relation R on the alphabet {a, b, · · · , z} given by α ∼ β iff α and β are both consonants.

The relation is symmetric and transitive but not reflexive.

Proof:

Reflexivity: It is not reflexive as (a, a) /∈ R.
Symmetry: It is symmetric. If (α, β) ∈ R then both α and β are consonants. Thus β and α are both
consonants and (β, α) ∈ R.
Transitivity: It is transitive. If (α, β) ∈ R and (β, γ) ∈ R then all three must be consonants. Thus
(α, γ) ∈ R.
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5.7 Partitions

1. Which of the following are partitions of the set {1, 2, 3, 4, 5, 6}?

(a) {1, 2, 3, 4, 5, 6}
(b) {{1, 2, 3, 4, 5, 6}}
(c) {{1}, {2}, {3}}
(d) {{1}, {2}, {3}, {4}, {5}, {6}}
(e) {{1, 2, 3}, {3, 4, 5}, {4, 5, 6}}
(f) {{1, 2, 3}, {4, 5, 6}}
(g) {{1, 2}, {3, 4}, {5, 6}}
(h) {{1, 2}, {3}, {4}, {5, 6}}

Answer: all but a, c, e.

2. Which of the following are partitions of the set Z?

(a) {{x : x < 0}, {0}, {x : x > 0}}
(b) {{x : x is even }, {x : x is odd }}
(c) {{x : x is divisible by 3 }, {x : x is not divisible by 3 }}
(d) {{x : the last digit of x is in {1, 2, 3, 4}}, {x :the last digit of x is in {6, 7, 8, 9}, {x : 5 | x}}
(e) {{x : x ≤ 0}, {x : x ≥ 0}}
(f) {{x : x < 0}, {x : x > 0}}

Answer: all but the last two

3. How many partitions are there of the following sets?

(a) {1, 2}
(b) {2, 4}
(c) {Z,N}
(d) {{∅}, ∅}
(e) {1}
(f) {Z}
(g) {1, 2, 3}
(h) {a, b, c}

Answers: 2,2,2,2,1,1,5,5

4. How many partitions P are there of the set {1, 2, 3, 4, 5, 6} that meet the following criteria?

(a) {1, 2} and {2, 3} are in P
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(b) {1, 2} and {3, 4} are in P

(c) {1, 2, 3} and {4} are in P

(d) {1, 2, 3, 4} is in P

(e) {1, 2, 3, 5, 6} is in P

Answers: 0,2,2,2,1

5. What partition of {1, 2, 3, 4, 5, 6} do we get for each of the following equivalence classes?

(a) aRb iff a and b have the same parity.

(b) aRb iff 3|a− b.
(c) aRb iff 5|a− b.
(d) aRb iff ab is positive.

(e) aRb iff a− 3.5 and b− 3.5 are either both positive or both negative real numbers

(f) aRb iff |a| = |b|.

Answers:

(a) {[1], [2]} (= {{1, 3, 5}, {2, 4, 6}})
(b) {[1], [2], [3]} (= {{1, 4}, {2, 5}, {3, 6}})
(c) {[1], [2], [3], [4], [5]} (= {{1, 6}, {2}, {3}, {4}, {5}})
(d) {[1]} (= {{1, 2, 3, 4, 5, 6}})
(e) {[1], [4]} (= {{1, 2, 3}, {4, 5, 6}})
(f) {[1], [2], [3], [4], [5], [6]} (= {{1}, {2}, {3}, {4}, {5}, {6}})

6. How many distinct equivalence classes are there in the partition generated by the following equivalence
relation.

(a) A = {1, 2, 3, 4, 5, 6, 7} and aRb iff 6 divides b− a.

(b) A = {1, 2, 3, 4, 5, 6, 7} and aRb iff 4 divides b− a.

(c) A = {1, 2, 3, 4, 5, 6, 7} and aRb iff b+ a is even.

Answers: 6,4,2



Chapter 6

Functions

6.1 Functions

1. Which of the following relations on A = {1, 2, 3, 4, 5, 6} are functions?

(a) R = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1)} [Answer: Function]

(b) R = {(1, 2), (2, 1), (3, 4), (4, 3), (5, 6), (6, 5)} [Answer: Function]

(c) R = {(1, 2), (2, 2), (3, 4), (4, 4), (5, 6), (6, 6)} [Answer: Function]

(d) R = {(1, 1), (1, 2), (3, 3), (3, 4), (5, 5), (5, 6)} [Answer: Not a Function]

(e) R = ∅ [Answer: Not a Function]

(f) R = {(x, y) ∈ A×A : x < y} [Answer: Not a Function]

(g) R = {(x, y) ∈ A×A : x = y + 1} [Answer: Not a Function]

(h) R = {(x, y) ∈ A×A : x = 6− y} [Answer: Not a Function]

(i) R = {(x, y) ∈ A×A : x = 7− y} [Answer: Function]

(j) R = {(x, y) ∈ A×A : x = 8− y} [Answer: Not a Function]

(k) R = {(x, y) ∈ A×A : x = y} [Answer: Function]

(l) R = {(x, y) ∈ A×A : y = 2} [Answer: Function]

(m) R = {(x, y) ∈ A×A : x = 2} [Answer: Not a Function]

(n) R = {(x, y) ∈ A×A : xy = 6} [Answer: Not a Function]

(o) R = A×A [Answer: Not a Function]

2. Which of the following relations on A×B = {1, 2, 3} × {4, 5, 6} are functions?

(a) R = {(1, 4), (1, 5), (1, 6)} [Answer: Not a Function]

(b) R = {(1, 5), (2, 5)} [Answer: Not a Function]

(c) R = {(1, 5), (2, 5), (3, 5)} [Answer: Function]

(d) R = {(1, 5), (2, 5), (3, 5), (3, 6)} [Answer: Not a Function]

115
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(e) R = {(x, y) ∈ A×B : y = x+ 3} [Answer: Function]

(f) R = {(x, y) ∈ A×B : y = 7− x} [Answer: Function]

(g) R = {(x, y) ∈ A×B : y = 5} [Answer: Function]

(h) R = {(x, y) ∈ A×B : x = 2} [Answer: Not a Function]

3. Which of the following relations on N× N are functions?

(a) R = {(x, y) ∈ N× N : y = x+ 3} [Answer: Function]

(b) R = {(x, y) ∈ N× N : y = x− 3} [Answer: Not a Function]

(c) R = {(x, y) ∈ N× N : x2 = y} [Answer: Function]

(d) R = {(x, y) ∈ N× N : x = y2} [Answer: Not a Function]

(e) R = {(x, y) ∈ N× N : xy = x} [Answer: Function]

(f) R = {(x, y) ∈ N× N : xy = y} [Answer: Not a Function]

(g) R = {(x, y) ∈ N× N : xy = 1} [Answer: Not a Function]

4. Which of the following relations on R× R are functions?

(a) R = {(x, y) ∈ R× R : y = 0} [Answer: Function]

(b) R = {(x, y) ∈ R× R : x = 0} [Answer: Not a Function]

(c) R = {(x, y) ∈ R× R : y + x = 0} [Answer: Function]

(d) R = {(x, y) ∈ R× R : y = x+ 3} [Answer: Function]

(e) R = {(x, y) ∈ R× R : x2 = y} [Answer: Function]

(f) R = {(x, y) ∈ R× R : x = y2} [Answer: Not a Function]

(g) R = {(x, y) ∈ R× R : |y| = |x|} [Answer: Not a Function]

(h) R = {(x, y) ∈ R× R : xy = x} [Answer: Not Function]

(i) R = {(x, y) ∈ R× R : xy = y} [Answer: Not a Function]

(j) R = {(x, y) ∈ R× R : xy = 1} [Answer: Not a Function]

(k) R = {(x, y) ∈ R× R : (1 + x)y = 1} [Answer: Not a Function]

(l) R = {(x, y) ∈ R× R : (1 + x2)y = 1} [Answer: Function]

5. For each of the following A and B state the total number of functions from A to B and, when possible,
give an example of a function from A to B.

(a) A = {1, 2}, B = {3} [Answer: 1, R = {(1, 3), (2, 3)}]
(b) A = {1}, B = {2, 3} [Answer: 2, R = {(1, 2)}]
(c) A = {1, 2}, B = {3, 4} [Answer: 4, R = {(1, 3), (2, 4)}]
(d) A = {1, 2}, B = {6, 7} [Answer: 4, R = {(1, 6), (2, 7)}]
(e) A = {1, 2}, B = ∅ [Answer: 0]

(f) A = ∅, B = {1, 2} [Answer: 1, R = ∅]
(g) A = {∅, {∅}}, B = {∅} [Answer: 1, R = {(∅, ∅), ({∅}, ∅)}]
(h) A = {∅}, B = {∅, {∅}} [Answer: 2, R = {(∅, ∅)}]
(i) A = {∅, {∅}}, {∅, {∅}} [Answer: 4, R = {(∅, ∅), ({∅}, ∅)}]
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6.2 Images and Inverse Images

For each of the following functions, find the images/inverse images requested. In these problems we set E to
be the even integers, O to be the odd integers, A to be the set {1, 2, 3}, B to be the set {−1, 0, 1}, and P to
be the primes.

1. f(n) : Z→ Z where f(n) = 2n

(a) f(A)

(b) f(B)

(c) f(E)

(d) f(O)

(e) f−1(A)

(f) f−1(B)

(g) f−1(E)

(h) f−1(O)

(i) f−1(P)

Solution:

(a) {2, 4, 6}
(b) {−2, 0, 2}
(c) {· · · ,−8,−4, 0, 4, 8, · · · } = {4k : k ∈ Z} = {k ∈ Z : 4 | k}
(d) {· · · ,−10,−6,−2, 2, 6, 10, · · · } = {4k + 2 : k ∈ Z} = {k ∈ Z : 4 | (k − 2)} = {k ∈ Z : 4 | (k + 2)}
(e) {1}
(f) {0}
(g) Z
(h) ∅
(i) {1}

2. f(n) : Z→ Z where f(n) = n+ 5

(a) f(A)

(b) f(B)

(c) f(E)

(d) f(O)

(e) f−1(A)

(f) f−1(B)

(g) f−1(E)

(h) f−1(O)
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Solution:

(a) {6, 7, 8}
(b) {4, 5, 6}
(c) O
(d) E
(e) {−4,−3,−2}
(f) {−6,−5,−4}
(g) O
(h) E

3. f(n) : Z→ Z where f(n) = 2n+ 1

(a) f(A)

(b) f(B)

(c) f(E)

(d) f(O)

(e) f−1(A)

(f) f−1(B)

(g) f−1(E)

(h) f−1(O)

4. f(n) : Z→ Z where f(n) = 3n

(a) f(A)

(b) f(B)

(c) f(E)

(d) f(O)

(e) f−1(A)

(f) f−1(B)

(g) f−1(E)

(h) f−1(O)

5. f((m,n)) : Z× Z→ Z where f((m,n)) = mn

(a) f(E× E)

(b) f(O×O)

(c) f(O× E)

(d) f−1(A)
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(e) f−1(E)

(f) f−1(O)

(g) f−1(P)

6. f(n) : Z→ Z× Z where f(n) = (n, n+ 1)

(a) f(A)

(b) f(B)

(c) f(E)

(d) f−1(E× E)

(e) f−1(E×O)

(f) f−1(O× E)

7. f(n) : Z→ Z× Z where f(n) = (n+ 2, n− 2)

(a) f(A)

(b) f(B)

(c) f(E)

(d) f−1(E× E)

(e) f−1(O×O)

(f) f−1(E×O)

(g) f−1(O× E)

Solution:

(a) {(3,−1), (4, 0), (5, 1)}
(b) {(1,−3), (2,−2), (3,−1)}
(c) {(2k + 2, 2k − 2) : k ∈ Z} = {(2k, 2k − 4) : k ∈ Z} = {(2k + 4, 2k) : k ∈ Z}
(d) E
(e) O
(f) ∅
(g) ∅

8. f((m,n)) : Z× Z→ Z× Z where f((m,n)) = (1, n)

(a) f(A×A)

(b) f(B ×B)

(c) f−1(E× E)

(d) f−1(O×O)

(e) f−1(E×O)
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(f) f−1(O× E)

Solution:

(a) {(1, 1), (1, 2), (1, 3)}
(b) {(1,−1), (1, 0), (1, 1)}
(c) ∅
(d) Z×O
(e) ∅
(f) Z× E

9. f((m,n)) : Z× Z→ Z× Z where f((m,n)) = (n,m)

(a) f(A×A)

(b) f(B ×B)

(c) f−1(E× E)

(d) f−1(O×O)

(e) f−1(E×O)

(f) f−1(O× E)

Solution:

(a) A×A
(b) B ×B
(c) E× E
(d) O×O
(e) O× E
(f) O× E

10. f((m,n)) : Z× Z→ Z× Z where f((m,n)) = (m+ n, 0)

(a) f(A×A)

(b) f(B ×B)

(c) f−1(E× E)

(d) f−1(E×O)

(e) f−1(O× E)
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6.3 Injectivity and Surjectivity

1. State whether the function f is injective, surjective, bijective, or none of the above.

(a) A = {1, 2, 3}, B = {1, 2, 3}, f : A→ B, f = {(a, b) ∈ A×A : a = 4− b} [Answer: Bijective.]

(b) A = {1, 2, 3}, B = {1, 2, 3}, f : A → B, f = {(a, b) ∈ A × A : b ≡ a + 1 (mod 3)} [Answer:
Bijective.]

(c) A = {1, 2, 3}, B = {4, 5, 6}, f : A→ B, f = {(1, 6), (2, 5), (3, 4)} [Answer: Bijective.]

(d) A = {1, 2, 3}, B = {4, 5, 6}, f : A→ B, f = {(1, 6), (2, 5), (3, 5)} [Answer: Neither.]

(e) A = {1, 2, 3, 4, 5}, B = {6, 7, 8, 9, 10}, f : A → B, f = {(1, 6), (2, 7), (3, 8), (4, 9), (5, 10)} [Answer:
Bijective.]

(f) A = {1, 2, 3, 4, 5}, B = {6, 7, 8, 9, 10}, f : A → B, f = {(1, 8), (2, 7), (3, 6), (4, 9), (5, 10)} [Answer:
Bijective.]

(g) A = {1, 2, 3, 4, 5}, B = {6, 7, 8, 9, 10}, f : A → B, f = {(1, 8), (2, 7), (3, 8), (4, 7), (5, 8)} [Answer:
Neither.]

(h) A = {1, 2, 3, 4, 5}, B = {7, 8}, f : A → B, f = {(1, 8), (2, 7), (3, 8), (4, 7), (5, 8)} [Answer: Only
surjective.]

(i) A = {1, 2}, B = {6, 7, 8, 9, 10}, f : A→ B, f = {(1, 8), (2, 7)} [Answer: Only injective.]

(j) A = {1, 2}, B = {3, 4, 5}, C = {6, 7, 8, 9}, h : A → B, h = {(1, 3), (2, 4)}, g : B → C, g =
{(3, 6), (4, 7), (5, 8)}, f = g ◦ h. [Answer: Only injective.]

(k) A = {1, 2, 3}, B = {4, 5, 6}, C = {7, 8}, h : A → B, h = {(1, 4), (2, 5), (3, 6)}, g : B → C,
g = {(4, 7), (5, 8), (6, 7)}, f = g ◦ h. [Answer: Only surjective.]

(l) A = {1, 2}, B = {3, 4, 5}, C = {6, 7, 8, 9}, h : A → B, h = {(1, 3), (2, 4)}, g : B → C, g =
{(3, 6), (4, 7), (5, 6)}, f = g ◦ h. [Answer: Neither.]

(m) A = {1, 2}, B = {3, 4}, C = {5, 6}, h : A→ B, h = {(1, 3), (2, 4)}, g : B → C, g = {(3, 5), (4, 6)}, f =
g ◦ h. [Answer: Both.]

(n) A = {1, 2}, B = {3, 4}, C = {5, 6}, h : A→ B, h = {(1, 4), (2, 3)}, g : B → C, g = {(3, 5), (4, 6)}, f =
g ◦ h. [Answer: Both.]

(o) A = {1, 2}, B = {3, 4}, C = {5, 6}, h : A→ B, h = {(1, 4), (2, 3)}, g : B → C, g = {(3, 5), (4, 5)}, f =
g ◦ h. [Answer: Neither.]

2. State whether the following functions are injective, surjective, bijective, or none of the above.

(a) f : {2, 3} → {4, 5, 6, 7, 8, 9}, f(x) = x2 [Answer: Only injective.]

(b) f : {2, 3} → {4, 9}, f(x) = x2 [Answer: Bijective.]

(c) f : {−3,−2, 2, 3} → {4, 9}, f(x) = x2 [Answer: Only surjective.]

(d) f : Z→ {−1, 1}, f(x) = (−1)n [Answer: Only surjective.]

(e) f : {1, 2} → {−1, 1}, f(x) = (−1)n [Answer: Bijective.]

(f) f : {1, 3} → {−1, 1}, f(x) = (−1)n [Answer: Neither.]

(g) f : {1} → {−1}, f(x) = (−1)n [Answer: Bijective.]
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(h) f : Q→ R, f(x) = x [Answer: Only injective.]

(i) f : R→ R, f(x) = x2 [Answer: Neither.]

(j) f : R→ [0,∞), f(x) = x2 [Answer: Only surjective.]

(k) f : [0, 1.]→ R, f(x) = x2 [Answer: Only injective.]

(l) f : [0, 1.]→ [0, 1.], f(x) = x2 [Answer: Bijective.]

(m) f : (0, 1)→ (0, 1), f(x) = x2 [Answer: Bijective.]

(n) f : [0,∞)→ [0,∞), f(x) = x2 [Answer: Bijective.]

(o) f : [0,∞)→ [0,∞), f(x) = |x| [Answer: Bijective.]

(p) f : [−1, 1.]→ [−1, 1.], f(x) = |x| [Answer: Neither.]

(q) f : [−1, 1.]→ [0, 1.], f(x) = |x| [Answer: Only surjective.]

(r) f : R→ R, f(x) = sin(x) [Answer: Neither.]

(s) f : R→ [−1, 1.], f(x) = sin(x) [Answer: Only surjective.]

(t) f : [0, π/2.]→ R, f(x) = sin(x) [Answer: Only injective.]

(u) f : [0, π/2.]→ [0, 1.], f(x) = sin(x) [Answer: Bijective.]

(v) f : (0,∞)→ R, f(x) = ln(x) [Answer: Bijective.]

(w) f : R→ R, f(x) = ex [Answer: Only injective.]

(x) f : R→ (0,∞), f(x) = ex [Answer: Bijective.]

(y) f : (0,∞)→ (1,∞), f(x) = 2x [Answer: Bijective.]

(z) f : (0,∞)→ [1,∞), f(x) = 2x [Answer: Only injective.]

3. State how many injective, surjective and bijective functions exist from A to B.

(a) A = {1}, B = {1} [Answer: 1,1,1.]

(b) A = {1, 2}, B = {1} [Answer: 0,1,0.]

(c) A = {1}, B = {1, 2} [Answer: 2,0,0.]

(d) A = {1, 2, 3}, B = {1} [Answer: 0,1,0.]

(e) A = {1}, B = {1, 2, 3} [Answer: 3,0,0.]

(f) A = {1, 2}, B = {1, 2} [Answer: 2,2,2.]

(g) A = {1, 2, 3}, B = {1, 2, 3} [Answer: 6,6,6.]

(h) A = {1, 2, 3, 4}, B = {1, 2, 3, 4} [Answer: 24,24,24.]

(i) A = {1, 2, 3, 4, 5}, B = {1, 2, 3, 4, 5} [Answer: 120,120,120.]

(j) A = {1, 2, 3, 4, 5, 6}, B = {1, 2, 3, 4, 5, 6} [Answer: 720,720,720.]

(k) A = {1, 2}, B = {1, 2, 3} [Answer: 6,0,0.]

(l) A = {1, 2}, B = {1, 2, 3, 4} [Answer: 12,0,0.]

(m) A = {1, 2}, B = {1, 2, 3, 4, 5} [Answer: 20,0,0.]

(n) A = {1, 2}, B = {1, 2, 3, 4, 5, 6} [Answer: 30,0,0.]

(o) A = {1, 2, 3}, B = {1, 2} [Answer: 0,6,0.]

(p) A = {1, 2, 3, 4}, B = {1, 2} [Answer: 0,14,0.]

(q) A = {1, 2, 3, 4, 5}, B = {1, 2} [Answer: 0,30,0.]

(r) A = {1, 2, 3, 4, 5, 6}, B = {1, 2} [Answer: 0,62,0.]
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6.4 Proofs With Injectivity and Surjectivity

For each of the following functions, find out if they are injective and find out if they are surjective. Prove
each of your conclusions is correct.

1. f : Z→ Z where f(n) = n+ 1

2. f : Z→ Z where f(n) = 2n+ 1

3. f : Z→ Z where f(n) = 2n

4. f : Z→ Z where f(n) = 3n− 5

Solution: f is injective but not surjective.

Proof: f is injective. Suppose f(a) = f(b). We will show that a = b. f(a) = f(b) implies 3a−5 = 3b−5.
Adding 5 to both sides tells us 3a = 3b and dividing by three gives us a = b.

f is not surjective. There is no a ∈ Z so that f(a) = 0 as this would demand 3a− 5 = 0 which implies
3a = 5 and a = 5/3 /∈ Z.

5. f : Z→ Z where f(n) = 2− n

6. f : Z→ Z where f(n) = 2− 3n

Solution: f is injective but not surjective.

Proof: f is injective. If f(a) = f(b) then 2 − 3a = 2 − 3b. Subtracting two from both sides gives us
−3a = −3b and multiplying by negative three shows that a = b.

f is not surjective. f(n) 6= 0 for any n ∈ Z. To see this notice that if f(n) = 0 then 2 − 3n = 0 so
2 = 3n which is impossible in Z.

7. f : Z→ Z where f(n) = 1− 2n

8. f : Z→ Z where f(n) = |n|

9. f : Z→ Z where f(n) = n2 + 2

Solution: f is neither injective nor surjective.

f is not injective. g(1) = 3 = g(−1).

f is not surjective. f(n) 6= 0 for any n ∈ Z. To see this notice that if f(n) = 0 then n2 + 1 = 0 so
n2 = −1 which is impossible in Z.

10. f : N→ N where f(n) = n+ 1

11. f : N→ N where f(n) = |n|

12. f : E→ E where f(n) = 2− n

13. f : E→ E where f(n) = 2n
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14. f : Z→ E where f(n) = 2n− 6

Solution: f is both injective and surjective.

Proof: f is injective. Suppose f(a) = f(b). We will show that a = b. f(a) = f(b) implies 2a−6 = 2b−6.
Adding 5 to both sides tells us 2a = 2b and dividing by two gives us a = b.

f is surjective. Let b be any even number in E. We must find a ∈ Z so f(a) = b. We are looking for a
so 2a− 6 = b so we know 2a = b+ 6. As both b and 6 are even b+ 6 is an even number so 1

2 (b+ 6) is
an integer. Simply let a = 1

2 (b+ 6) and we are done.

15. f : E→ Z where f(n) = n/2 + 1

16. f : E→ E ∪ {0} where f(n) = |n/2|
Solution: f is surjective but not injective.

Proof: f is not injective since f(2) = f(−2).

f is surjective. Let b be any nonnegative integer. We want an a so |a/2| = b. If we pick nonnegative a
then |a/2| = a/2 and we only need a/2 = b. Simply let a = 2b. Then a is nonnegative so our conclusion
is met.

17. f : Z× Z→ Z where f((m,n)) = mn

18. f : Z× Z→ Z where f((m,n)) = mn2

19. f : Z× Z→ Z where f((m,n)) = 2mn

20. f : Z→ Z× Z where f(n) = (n, n+ 1)

21. f : Z→ Z× Z where f(n) = (n2,−n2)

22. f : Z× Z→ Z× Z where f((m,n)) = (n,m)

23. f : Z× Z→ Z× Z where f(m,n) = (n− 1,m+ n)

Solution: f is both injective and surjective.

Proof: f is injective. Suppose f(a, b) = f(c, d). We will show that (a, b) = (c, d). f(a, b) = f(c, d)
implies (b− 1, a+ b) = (d− 1, c+ d) so b− 1 = d− 1 and a+ b = c+ d. Since b− 1 = d− 1 we know
b = d so a+ b = c+ b. This implies a = c. Since b = d and a = c we know (a, b) = (c, d).

f is surjective. Suppose (c, d) is any point in Z×Z. We will show we can find (a, b) so that f(a, b) = (c, d).
f(a, b) = (b−1, a+ b) so we need to find (a, b) so that b−1 = c and a+ b = d. We can set b = c+ 1 and
a = d− b = d− (c+ 1) = d− c− 1. Then f(d− c− 1, c+ 1) = (c+ 1− 1, d− c− 1 + c+ 1) = (c, d).

24. f : Z× Z→ Z× Z where f((m,n)) = (m+ n,m− n)

25. f : Z× Z→ Z× Z where f((m,n)) = (m+ n, 0)

26. f : Z× Z→ Z× Z where f(x, y) = (x2 + y, x)

Solution: f is both injective and surjective.

Proof: f is injective. If f(a, b) = f(c, d) then (a2 + b, a) = (c2 + d, c) so a2 + b = c2 + d and a = c. Thus
c2 + b = c2 + d and b = d. Since a = c and b = d we know (a, b) = (c, d).
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f is surjective. Suppose (c, d) is any point in Z×Z. We want to find (a, b) in Z×Z so that f(a, b) = (c, d).
This means (a2 + b, a) = (c, d) so a = d and a2 + b = c. We can set a = d and then want d2 + b = c or
b = c− d2. Then f(a, b) = (a2 + b, a) = (d2 + c− d2, d) = (c, d).

27. f : Z× Z→ Z× Z where f(x, y) = ((x+ y)2, x)

Solution: f is neither injective nor surjective.

Proof: f is not injective. If f(a, b) = f(c, d) then ((a+ b)2, a) = ((c+ d)2, c) so (a+ b)2 = (c+ d)2 and
a = c. Thus (a+ b)2 = (a+ d)2 and (a+ b) = ±(a+ d) If (a+ b) = (a+ d) then b = d and we would be
fine, but a+ b could equal −(a+ d). There a+ b = −a− d so we can seek to set d = −2a− b. Consider
(a, b) = (1, 1) and (c, d) = (1,−3). Then note f(1, 1) = (4, 1) and f(1,−3) = (4, 1) yet (1, 1) 6= (1,−3).

f is not surjective. There is no (a, b) so f(a, b) = (−1, 0).

28. f : R→ R where f(x) = 1− 2x

29. f : R→ R where f(x) = 3x− 5

Solution: f is both injective and surjective.

Proof: f is injective. Suppose f(a) = f(b). We will show that a = b. f(a) = f(b) implies 3a−5 = 3b−5.
Adding 5 and dividing by 3 gives us a = b.

f is surjective. Let b be any real number. We want an a so f(a) = b or 3a − 5 = b. Simply set
a = 1

3 (b+ 5).

30. f : R→ R where f(x) = 3− 3x3

31. f : R→ R where f(x) = a2 − 2a+ 5

Solution: f is neither injective nor surjective.

Proof: f is not injective since f(2) = f(0).

f is not surjective since there is no a ∈ R so f(a) = 0. The quadratic equation shows x2 − 2x+ 5 = 0
has no real solutions.

32. f : [0,∞)→ R where f(x) = 1 +
√
x

Solution: f is injective but not surjective.

Proof: f is injective. Suppose f(a) = f(b). We will show that a = b. f(a) = f(b) implies 1 +
√
a =

1 +
√
b. Subtracting 1 to both sides gives

√
a =
√
b and squaring both sides gives us b = a.

f is not surjective since there is no a ∈ [0,∞) so f(a) = 0. We would need
√
x = −1 which is not

possible in R.

33. f : R− {1} → R− {1} where f(x) = x+1
x−1

Solution: f is both injective and surjective.

Proof: f is injective. Suppose f(a) = f(b). We will show that a = b. f(a) = f(b) implies a+1
a−1 = b+1

b−1 .
Multiplying both sides by (a−1)(b−1) gives (a+1)(b−1) = (b+1)(a−1) so ab+b−a−1 = ba−b+a−1.
Subtract ab− 1 from both sides to get b− a = a− b. This implies 2b = 2a and thus b = a.

f is surjective. Let b be any real number not equal to 1. We want an a so a+1
a−1 = b or a+ 1 = b(a− 1).

This means ba − b − a − 1 = 0 or a(b − 1) = b + 1. Since b 6= 1 we can divide to get a = b+1
b−1 which

works as our a.
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6.5 Bijections and Cardinality

1. Prove that the following sets have the same cardinality by finding a bijection from one to the other.
You do not have to prove your function is a bijection, but it must be one.

(a) [0, 1] and [−2, 0]

(b) [0, π/2] and [0, 1] [Answer: f : [0, π/2]→ [0, 1], f(x) = sin(x) or f(x) = cosx or f(x) = 2
πx.]

(c) [−1, 1] and [0, π]

(d) (0, 1) and (0, 2) [Answer: f : (0, 1)→ (0, 2), f(x) = 2x or f(x) = 2
√
x or f(x) =

√
4x.]

(e) (0, 1) and (3, 5) [Answer: f : (0, 1)→ (3, 5), f(x) = 2x+ 3.]

(f) (1, 3) and (−3, 7)

(g) (1, 4] and [0, 3)[Answer: f : (1, 4]→ [0, 3), f(x) = 4− x.]

(h) (1, 4] and [0, 1)[Answer: f : (1, 4]→ [0, 1), f(x) = 1
3 (4− x).]

(i) (1, 4] and [1, 2) [Answer: f : (1, 4]→ [1, 2), f(x) = 1
3 (4− x) + 1.]

(j) [0, 1) and (0, 1]

(k) [0, 1) and (−3, 4] [Answer: f : [0, 1)→ (−3, 4], f(x) = −7x+ 4.]

(l) [0, 4) and (−3, 1]

(m) [0,∞) and [1,∞) [Answer: f : [0,∞)→ [1,∞), f(x) = x+ 1 or f(x) = ex or f(x) = x2 + 1.]

(n) (0,∞) and (π,∞) [Answer: f : (0,∞)→ (π,∞), f(x) = ex + π − 1.

(o) (0,∞) and (−∞, 2)

(p) (−π/2, π/2) and R [Answer: f : (−π/2, π/2)→ R, f(x) = tan(x).]

(q) R and (0, π) [Answer: f : R→ (0, π), f(x) = arctan(x) + π.]

(r) R and (0, 1) [Answer: f : R→ (0, 1), f(x) = arctan(x)+π
π .]

(s) R and (1,∞)

(t) N and {1, 4, 9, 16, · · · }
(u) {5, 10, 15, 20, · · · } and {−2,−1, 0, 1, 2, 3, · · · }
(v) E ∩ N and {3, 6, 9, 12, 15, · · · }
(w) N ∩ E and N− E
(x) {· · · ,−2,−1, 0, 1, 2, 3} and {−2,−1, 0, 1, · · · }
(y) {−3,−2,−1, 0, 1, 2, · · · } and { 12 , 1,

3
2 , 2,

5
2 , · · · }.

(z) {· · · ,−11,−8,−5,−2} and {4, 6, 8, 10, · · · } [Answer: f : {· · · ,−11,−8,−5,−2}→ {4, 6, 8, 10, · · · },
f(x) = 4− 2

3 (x+ 2).]

2. For each of the following sets, prove that they are denumerable 1. If you state that something is a
bijection, try to prove that it really is.

(a) {−5,−3,−1, 1, 3}[Answer: f : N→ {−5,−3,−1, 1, 3}, f(x) = 5− 2x.]

1This simply means they have the same cardinality as N.
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(b) E− N [Answer: f : N→ E− N, f(x) = −2x+ 2.]

(c) E ∩ N
(d) E− N
(e) (Z− E) ∩ N

Solution: We want to find a bijection between N and (Z − E) ∩ N. The first set can be written
{1, 2, 3, 4, 5, · · · } and the second can be written {1, 3, 5, 7, · · · }. Lets try to find an f(x) sending 1
to 1, 2 to 3, 3 to 5 and so on. Notice that in the image of the function we want, the entries differ
by 2, so lets try multiplying by 2. The function f(x) = 2x doesn’t work, since it sends 1 to 2, 2
to 4 and so on, but we can correct this by subtracting 1 from each of the numbers. This will give
us f(x) = 2x− 1. We now prove this is a bijection.

Proof: For injectivity note that if f(a) = f(b) then 2a − 1 = 2b − 1. Adding 1 gives us 2a = 2b.
Dividing by 2 allows us to conclude that a = b.

For surjectivity note that if b is in (Z−E)∩N then b is of the form 2k+1 (from (Z−E)) and k must
be greater than or equal to 0 (from N.) We must find an a in N so that f(a) equals this 2k + 1.
Let’s try k+1. Since k ≥ 0, k+1 must be in N. Also f(k+1) = 2(k+1)−1 = 2k+2−1 = 2k+1
which is exactly what we wanted to show.

(f) (Z− E)− N
Solution: We want to find a bijection between N and (Z − E) − N. The first set can be written
{1, 2, 3, 4, 5, · · · } and the second can be written {−1,−3,−5, · · · }. Lets try to find an f(x) sending
1 to −1, 2 to −3, 3 to −5 and so on. Notice that in the image of the function we want, we need
the entries to differ by 2, so lets try multiplying by 2 and taking the negatives. The function
f(x) = −2x doesn’t work, since it sends 1 to -2, 2 to -4 and so on, but we can correct this by
adding 1 to each of the numbers. This will give us f(x) = −2x+ 1. We now prove this is bijective.

Proof: We still need to prove this is a bijection. For injectivity note that if f(a) = f(b) then
−2a+ 1 = −2b+ 1. Subtracting 1 gives us −2a = −2b. Dividing by −2 allows us to conclude that
a = b.

For surjectivity note that if b is in (Z− E) ∩ N then b is of the form 2k + 1 (from (Z− E)) and k
must be less than zero. We must find an a in N so that f(a) equals this 2k+1. If f(a) = b = 2k+1
then −2a+ 1 = 2k+ 1 so −2a = 2k and thus a must equal −k. Since k < 0 we know a > 0 which
is exactly what we needed since a ∈ N. So picking a = −k gives us an a in N where f(a) = b.

(g) {· · · ,−7,−6,−5,−4}
(h) {· · · ,−9,−7,−5,−3}
(i) {· · · ,−12,−7,−2, 3}
(j) {−8,−5,−2, 1, 4, · · · }
(k) {

√
3,
√

4,
√

5, · · · }
(l) { 1√

5
, 1√

6
, 1√

7
, 1√

8
}

Solution: We want to find a bijection between { 1√
5
, 1√

6
, 1√

7
, 1√

8
}. The first set can be written

{1, 2, 3, 4, 5, · · · } Lets try to find an f(x) sending 1 to 1√
5
, 2 to 1√

6
, 3 to 1√

7
, and so on. We need

radicals in the denominator so we could try f(x) = 1√
x

which takes the reciprocal of the square

root. This doesn’t work, however, because it would send 1, 2, 3, 4, · · · to 1√
1
, 1√

2
, 1√

3
, 1√

4
, · · · . We
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need the entries in the radical to be four more than they are, so we can try f(x) = 1√
x+4

. Lets

show that this works by proving this is a bijection.

Proof: For injectivity note that if f(a) = f(b) then 1√
a+4

= 1√
b+4

. This implies
√
a+ 4 =

√
b+ 4

and squaring both sides tells us that a + 4 = b + 4. Subtracting four allows us to conclude that
a = b.

For surjectivity note that if b is in { 1√
5
, 1√

6
, 1√

7
, 1√

8
} then it equals 1√

k
for some integer k ≥ 5. We

need to find the a so f(a) = b = 1√
k

and show that a is a natural number. 1√
a+4

= 1√
k

if and only

if
√
a+ 4 =

√
k which is true exactly when a + 4 = k. since k ≥ 5 we know a > 0. Since k is an

integer, a is also an integer. As a positive integer, it is in the natural numbers and we have shown
our f(x) to be surjective.

(m) { 35 ,
3
6 ,

3
7 ,

3
8 , · · · }

(n) { 11 ,
1
4 ,

1
9 ,

1
16 , · · · }

(o) { 87 ,−
9
7 ,

10
7 ,−

11
7 , · · · }

(p) { 12 ,
2
3 ,

3
4 ,

4
5 , · · · }

(q) { 21 ,
3
8 ,

4
27 ,

5
64 , · · · }

(r) {2, 5, 10, 17, 26, 37, · · · }
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Definitions

A.1 Statements

Definition A.1.1. A statement or proposition is a sentence that is definitely either true or false.

Definition A.1.2. A logical operator is a symbol used to connect propositions to form a new sentence whose
truth value depends only on the values of those proposition in some way.

Definition A.1.3. The truth table for a statement Q involving propositions P1, P2, · · · , Pn is a table
containing every possible arrangement of truth values for our Pi together with whether or not Q is true or
false under those conditions.

Definition A.1.4. The negation of a statement P is the new statement, written ∼ P , which is considered
true if and only if P is not true.

Definition A.1.5. The conjunction of two statements P and Q is the new statement, written P ∧Q, which
is considered true if and only if both P and Q are true.

Definition A.1.6. The disjunction of two statements P and Q is the new statement, written P ∨Q, which
is considered true if at least one of P and Q are true.

Definition A.1.7. Given statements P and Q, the conditional, written P ⇒ Q, is the statement “if P then
Q” which is always considered true except for when P is true and Q is not.

Definition A.1.8. The biconditional of two statements P and Q is the new statement, written P ⇔ Q,
which is considered true if P and Q have the same truth value.

Definition A.1.9. Two statements Q and R, made from the propositions P1, P2, · · · , Pn are logically equiv-
alent if they are both true under the exact same conditions of the truth values of our Pi. In this case we write
P ≡ R.

Definition A.1.10. A statement made from the propositions P1, P2, · · · , Pn is a tautology if it is true for
every possible assignment of truth values for our Pi.

Definition A.1.11. A statement made from the propositions P1, P2, · · · , Pn is a contradiction if it is false
for every possible assignment of truth values for our Pi.
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Definition A.1.12. The contrapositive of the conditional statement P ⇒ Q is the statement ∼ Q⇒∼ P.

Definition A.1.13. The universe of discourse for is the collection of objects currently being discussed.

Definition A.1.14. A quantified statement P (n) is a statement containing a variable that is either true or
false for each n in our universe of discourse.

Definition A.1.15. A universal quantifier ∀n when placed before a quantified statement P (n), forms a new
statement which is true if and only if P (n) is true for each n in our universe of discourse.

Definition A.1.16. An existential quantifier ∃n when placed before a quantified statement P (n), forms a
new statement which is true if and only if P (n) is true for some n in our universe of discourse.
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A.2 Sets

Definition A.2.1. A set is a collection of objects.

Definition A.2.2. The cardinality of a set is the number of elements in that set.

Definition A.2.3. The empty set ∅ is the collection of no objects.

Definition A.2.4. Two sets are equal if they contain the same elements.

Definition A.2.5. We call a an element of the set A, and write a ∈ A, if a is one of the objects in the set
A.

Definition A.2.6. We call the set A a subset of the set B and write A ⊆ B, if every element in A is also
in B.

Definition A.2.7. The power set of the set A, is the collection P(A) of all subsets of A.

Definition A.2.8. The union A∪B of the sets A and B, is the collection of all objects that are in A or B.

Definition A.2.9. The intersection A∩B of the sets A and B, is the collection of all objects that are in A
and B.

Definition A.2.10. Given two sets A and B, the set A setminus B, written A− B, is the collection of all
the objects in A that are not in B.

Definition A.2.11. When considering sets as all subsets of some universe of discourse U , the complementAC

of the set A is the collection U −A.

Definition A.2.12. The cartesian product of the sets A and B, is the collection A×B of ordered pairs (a, b)
where a ∈ A and b ∈ B.

Definition A.2.13. A set is infinite if it contains infinitely many objects. Otherwise it is called finite.

Definition A.2.14. The natural numbers N are the set {1, 2, 3, · · · } of all positive whole numbers.

Definition A.2.15. The integers Z are the set {· · · − 3,−2,−1, 0, 1, 2, 3, · · · } of all whole numbers.

Definition A.2.16. The rational numbers Q are the set {ab : a ∈ Z, b ∈ Z, b 6= 0}.

Definition A.2.17 (Not a real definition). The real numbers R are the (surprisingly difficult to define) set
of numbers familiar to math majors from use in courses such as College Algebra, Pre-calculus, and Calculus.

Definition A.2.18. The irrational numbers are the collection of all real numbers that are not rational.

Definition A.2.19. The complex numbers C are the set {a+ bi : a ∈ R, b ∈ R}.
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A.3 Number Properties and Sequences

Definition A.3.1. An integer n is even if it is of the form 2k for some k in Z.

Definition A.3.2. An integer n is odd if it is of the form 2k + 1 for some k in Z.

Definition A.3.3. We say that two integers have the same parity if they are both even or both odd.

Definition A.3.4. We say a non-zero integer b divides the integer a and write b|a if a = bk for some k ∈ Z.

Definition A.3.5. The prime numbers are the set of all positive integers with exactly two positive divisors.

Definition A.3.6. We say that a is equivalent to b modulo n and write a ≡ b (mod n) if n divides b− a.

Definition A.3.7. Given two real numbers x and y, we say that x is less than y and write x < y if y− x is
positive.

Definition A.3.8. The absolute value of a real number x is defined to be −x if x is negative, and x if it is
not.

Definition A.3.9. A sequence is an ordered collection of (often infinitely many) objects from some set.

Definition A.3.10. A recurrence relation is a sequence where each term is defined by a formula involving
the preceding terms.
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A.4 Relations and Functions

Definition A.4.1. A relation on A × B is a subset R of A × B. When B = A we say that R is a relation
on A.

Definition A.4.2. The domain of a relation R on A×B is the set dom(R) = {a ∈ A : (a, b) ∈ R for some
b ∈ B.}
Definition A.4.3. The range of a relation R on A × B is the set ran(R) = {b ∈ B : (a, b) ∈ R for some
a ∈ A.}
Definition A.4.4. The inverse of a relation R on A×B is the set R−1 = {(b, a) ∈ B ×A : (a, b) ∈ R.}
Definition A.4.5. Given a relation R on A × B and a relation S on B × C the composition of S and R,
written S ◦R, is {(a, c) : there is some b ∈ B so that (a, b) ∈ R and (b, c) ∈ S.}
Definition A.4.6. A relation R on A is reflexive if (a, a) ∈ R for every a ∈ A.
Definition A.4.7. A relation R on A is symmetric if whenever (a, b) ∈ R we have (b, a) ∈ R.
Definition A.4.8. A relation R on A is transitive if whenever (a, b) ∈ R and (b, c) ∈ R we have (a, c) ∈ R.
Definition A.4.9. A relation R on A is reflexive, symmetric and transitive is called an equivalence relation.

Definition A.4.10. The equivalence class of a in an equivalence relation on A is the set [a] = {b ∈ A :
(a, b) ∈ R.}
Definition A.4.11. A partition of a set A is a collection P of nonempty subsets of A so that

1. Every x ∈ A is in some set B ∈ P .

2. If B and C are in P then either B ∩ C = ∅ or B = C.

Definition A.4.12. A relation on A×B is a function from A to B if

1. dom(R) = A.

2. If (x, y) and (x, z) are in R then y = z.

If a relation is a function we write f(a) = b for (a, b) ∈ R. We also write f : A→ B to indicate that f is a
function from A to B.

Definition A.4.13. The image of the set A under the function f on A×B is the set f(A) = {b ∈ B : ∃a ∈ A
so f(a) = b}. This equals the set of all possible outputs of elements of A.

Definition A.4.14. The pre image of the set B under the function f on A×B is the set f−1(B) = {a ∈ A :
f(a) ∈ B}. This equals the set of all elements in A that have outputs in B. Note that despite the notation, f
does not need to be invertible for us to consider this set.

Definition A.4.15. A function on A × B is injective if f(a) = f(b) implies a = b for every a and b in A.
This is equivalent to saying no two elements of A are sent by f to the same element. This is also sometimes
given in the contrapositive form of a 6= b implies f(a) 6= f(b).

Definition A.4.16. A function on A × B is surjective if for every b ∈ B there is some a ∈ A so that
f(a) = b.

Definition A.4.17. A function on A×B is bijective if it is both injective and surjective.

Definition A.4.18. A set A is countably infinite or denumerable if there is a bijection from N to A.
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Appendix B

Counting Formulas

1. The number of subsets of A, also known as |P(A)| is equal to 2|A|.

2. The size of the cartesian product of A and B is |A| × |B|.

3. The number of relations on A×B is 2|A|×|B|.

4. The number of functions on A×B is |B||A|.
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